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TOPOGRAPHY OF POTENTIAL ENERGY SURFACES

LV. Basilevsky
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Abstract — The curves on a multi—dimensional potential ener-
gy iuCace (PES) linking the reactant and the transition
state configurations are constructed. They are generally
distinct frOm usual reaction path curves and a special
term "optimum ascent path" (oAF) is accepted for them.
A local criterion is formulated allowing to distinguish
the points located on an OAP among other points in its
vicinity. A mathematical analysis of singular points of
a PES, where its valleys or ridges emerge, dissipate or
bifurcate, is presented. These points are specified as
different branching points of OAPs.

INTRODUCTION

Potential energy surface (PES) is a basic concept of the modern theory of
chemical reactions. Since heavy molecular fragments are usually transferred
in organic reactions so their motion can be treated as classical one with
the high degree of accuracy. If a potential barrier is sufficiently large
and temperature is not too high then the majority of classical trajectories
follow from the reactant to the product region close to the minimum energy
path through the saddle point region. Under these circumstances the elemen-
tary geometrical elements of a PES, such as stationary points (the minimum
and saddleones), energetical valleys and ridges, reaction coordinates eto,
become of fundamental importance for chemistry. The topographic interpreta-
tion of these concepts is obvious for a PES depending om two geometrical
variables. It can be also extended onto multi—dimensional PESs.

SEVERAL DEFINITIONS

Let potential energy U depend on internal coordinates c, U U('cJ.Then stationary points obey the relation

= 0 (1)

Energetioal valley is determined by the condition that all cross—sections
orthogonal to its local direction pass through minima at the points of its
bottom. At least one of the transversal cross—sections has a maximum at the
top line of an energetical ridge.

The reaction path (RP) curve is usually defined (1) as a minimum energy
path, a gradient steepest descent line starting from a saddle point. If
coordinates can be treated as cartesian the following differential

equation determines a RP curve

'/di= N1'au/a (2)

(,)
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Here soalar parameter represents an arc length of the RP curve and Al
:I.s the square of the gradient norm.

Internal variables are not uniquely chosen, moreover, they are usual—

ly noncartesian. Stationary points, as defined by equation (1), are, never—
theless, invariant. That is to say, they represent the same geometrical
configuration of a chemical system for any choice of 3 . That is not the

case when a collection of points lying on a RP is considered because equa—
tions (2) and (:3) are not invariant and generate a noninvari.ant RP specific
for a given particular coordinate system. However, these noninvariant curves
connect invariant minimum and saddle points. This property is sufficient for
many chemical applications as well as for a general discussion. Therefore
we don't consider below the mathematically refined equations generating
an invariant RP (2,3) or related invariant curves.

LOCATION OF SADDLE POINTS ON A MULTI—DIMENSIONAL PES

Definitions (2) and (3) can be utilized to calculate a RP if the saddle
point of interest is found beforehand. The necessary initial condition is

for (4)

where 3' and O denote the values of respective quantities at the saddle

point. From practical point of view an inverse problem is more interesting:
to find the saddle point following the HP upwards along the valley, starting
from the reactant (or product) region. Unfortunately, a straightforward
application of relations (2)—(4) appears to be inefficient for that purpose
because the respective computational procedure is unstable and diverges (3).
So there is a need of a correctional criterion allowing to distinguish the
bottom of a valley among the adjacent points. It should be a local (diffe-
rential) one, as opposed to the global (integral) criterion as given by
(2)—(4), which allows discerning the RP points (in the upwards sequence
only after the entire curve being calculated (in the downwards sequence

The empirical intuitive methods realizing the RP calculation are thoroughly
discussed in the recent review (4). They represent different iterative pro-
cedures inevitably invoking the conventional criterion (2)—(4) at some stage.

THE MOUNTAINEER'S ALGORITHM

An alternative approach is to formulate a local criterion for constructing
the smooth curve linking a reactant (or product) region with a saddle point.
It exactly imitates the strategy of a person climbing a saddle point along
a valley. We call it "the mountaineer's algorithm" (5). It generates a curve
which is generally distinct from the RP curve. So we accept a special term
"the optimum ascent path" (clAP) for it.

The local criterion reads as follows: If a point is located on an OAP then
the gradient norm has a minimum at it as compared with the adjacent points
on the same constant energ surface. That is, in order to find a point on
an OAP one has to invesflie théaR3jacent sector of the constant energy
surface searching for a locus where the ascent steepness passes through
a minimum.

It is expedient to check whether this minimum condition can be fulfilled
for the points belonging to a RP. In the simplest two—dimensional case we
obtain the relation

(5)

where K is the curvature of a lIP curve and V is the transversal vibra-
tional coordinate orthogonal to the lIP. It follows that the RP and OAP cur-
ves coincide in the two special cases: either if both of them are straight
lines (/(= 0 ) or at stationary points (M 0) . If 41/&' 0 at the
points of a lIP then lIP and clAP are quite different curves.

The criterion so formulated is mathematically equivalent (5) to another
criterion reported earlier by Panoi (6). The latter one defines a curve
at any point of which the gradient direction is simultaneously the direction
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of one of elgenveotors of the second derivative matrix of U

The mountaineer's algorithm proved to be an efficient tool for a practial
search of saddle points (5). Its merits become more visible with the in—
crease of number of internal variables.

It should be noted that the curve passing along the top of an energetical
ridge can be detected using the same mountaineer's algorithm.

THE SINGULAR POINTS

An important peculiarity of OAP curves is the existence of singular points
on them where they emerge, dissipate or bifurcate. They are also the points
of emergence, dissipation or bifurcation of valleys and ridges of a multi—
—dimensional PES. For instanse, the dissipation of a valley takes place on
the PES of disrotatory decyolization

cyclobutene — butadiene (6)

forbidden by the orbital symmetry rules. As originally demonstrated by
Dewar and Kirshner (7), the valley originating from the saddle point which
corresponded to the transition state of this reaction was quite poorly
displayed and was not revealed at the bottom of the main reactant valley.
The above reasoning allows us to claim that it has dissipated prior to rea—
ching the main valley. It is likely that such structure of a PES is gene--
rally characteristic of symmetry forbidden reactions.

The situation of valley branching has been studied (5) for the symmetry
allowed conrotatory reaction (6). This system has a pair of chemically
equivalent saddle points corresponding to rotations in opposite directions
of the two terminal rnethylene groups, as shown in Fig.l.
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Fig. 1. The scheme of the PES of conrotatory electrocyclic
reaction (6). The outlook from the side of reactants, the
valleys and ridges leading to the product region are not
seen. The points of a PES are denoted by oapita]. letters:
W,M and X are minimum, maximum and saddle points respecti--
vely; ( and ,-/) are triple branching points. The full
lines with indices v and r represent valley and ridges
respectively. The broken lines represent rocks (see below).

Fig.2. The emergence of double points. Different parabolas
represent function for different values.
The roots of equation (7) are and

The two valleys are directed towards two saddle points (x points). At the
place of branching (combination of two (/1 points in Fig.l) the three OAT
curves, namely, a pair of valleys and the ridge between them, arise from
a single curve, the valley coming from the reactant minimum.

There are no such singularities on HP curves. The gradient lines can evi—
dently pass through flat regions of a PES ramp displaying neither valleys
nor ridges.

The presence of singular points encumbers utilization of OAPs as a means of
searching transition states. More specifically, there is a necessity of
careful extra calculations in the vicinity of points of valley branching
whereas the mountaineer's algorithm fails at all to be valid at dissipation
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points. It Is evident, from the other hand, that there are just OAP curves
that are closely related to Intrinsic properties of a PES, so that their
special study would supply us with a valuable information on the PES struc—
ture.

THE ANALYSIS OF SINGULAR POINTS (8)

The above mentioned singularities can be classified either as branching
points of a certain order ( y = 2,3,...) o the equation determining an
OAP curve or as combinations of such elementary branching points. Consider,
for instance, the simplest twodimensional situation with geometrical van—
ables #:Z , cSl( . The equation of a constant energy contour,U(x)he
allows one to express in terms of and leading to a resultant
OAP equation in the form F(e )= 0 . We can set = = = 0 at the
branching point investigated. hen in the vicinity of a second order point
( y = 2) function can be substituted by its Taylor expansion,
the parabola

1c: Qf& ( ic)cy '' Ccc/L= 0 ()
I: =O then parabola /7'&) is tangent to the absciss axis at the
coordinate origin (Fig.2) when 6=0 . Equation (7) determines the OAT
curve = () , x = x() and it is seen that a pain of solutions,
corresponding to a pair of real roots of (7), emerge or dissipate at
The similar treatment of triple points ().'= 3) needs the consideration
of a cubic parabola.

The coefficients of the expansion in (7) can be expressed in terms of par-
tial derivatives LJ , , , etc J/e etc)
calculated at the branching point. So the basic branching condition

reduces to

___ -,' --- =0, (U = =0) (8)

This equation defines a dissipation double point on a PES as well as equa-
tion (1) defines a stationary point.

In a multi—dimensional situation with coordinates , (i = 1,2, . . . ,n)
a set of equations 1j = 0 ( ( = l,2,...,n) should be dealt

with. The generalization of the basic branching condition is

cetê=0 (9)

where matrix is constructed of partial derivatives at the
branching point. It can be shown that in the vicinity of a branching point
the multi—dimensional situation actually reduces to a two—dimensional one.
One of the pair of the finally selected coordinates, denoted as
should be measured along the gradient direction. The other one, denoted
as , is associated with the direction of the eigenvector of matrix cor-
responding to its zero eigenvalue.

An important comment is in order. One of the two solutions emerging or
dissipating at second order branching points always correspond to a maximum
of the square of the gradient norm IV rather than to a minimum. Since
the ascent steepness exhibits a maximum rather than a minimum along such
curves, so we accept the term "rocks" in order to distinguish them from
OAPs. The second solution is evidently an OAT (see Fig. 3 for an illustra-
tion).

The different double and triple points can be further detalized: the doub-
le V and A points, the triple L/) and ,'f points as explained in
Figs. 3 and 4. Different topographical situations are described as combi-
nations of elementary singular points. So, the emergence of a pair val-
ley + ridge is displayed as a combination of V and 'P points whereas the
valley branching emerges from a combination of two points of different
character. This symbolism is used in Fig. 1 for schematically drawing the
PES of reaction (6).
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HOW DISSIPATION POINTS CAN BE OBSERVABLE

The polymer chains that are formed In the course of selld-phase polyrnerlza-
tion are expected to move inside the parent monomeric molecular crystal
during their growth (9). The respective motion can be imitated (10) by
a system of point masses connected by massless strings moving in a sinussi—
dal external field (Fig. 5). The motion is performed by an external force
operating the point Z='O , the head of the chain. The respective ooordi—
nate X0 represents the overall translational motion of the chain.

a)
q4 't=f t:O

— Fig. 5. a) The model of polymer chain. The chain period is

b ) xo x e =e— where e0 represents the period when the
external crystalline field is absent (the free chain).

z is the translational coordinate.

b) The dependence of the regular chain deformation L on
the translational coordinate , . The scales for
and ., are quite different. The sloped lines are the
projections of energetical valleys (index t ) and ridges

z (index V ) respectively. The dots show how the chain
0 moTes.

If the chain period is not an integer (or even not approximately integer)
of the period of the crystalline potential then, under certain circumstan.
ces, the translation is accompanied by stretching of the chain so that the
period changes by the negative value of depending on , . The
dependence shown in the lower part of Fig. S represents a piecewisely line-
ar multi-valued function bounded by the upper and lower values
(&sQx>0 )•
We can now consider the adiabatic potential energy of the chain (the sum
of the deformation energy and the potentials of its fragments in the siunso-
dal external field) as a function of two parameters: (J('1,X0). Then
the sloped lines in Fig. Sb correspond to the valleys and ridges of such a
PES. In the vicinity of critical values the neighbouring
valley and ridge dissipate so that for /1/ >4,,, 'the equilibrium adiaba-
tic solutions 4 (,) do not exist at all. While moving adiabatically
along a valley the chain is stretched and its energy Increases. That pro-
ceeds continuously until the dissipation point is reached. After its pass-
ing the system finds itself on a side slope of a PES and spontaneously
slides down to the nearest valley. On reaching the next dissipation point
this situation is repeated and so on. The overall motion becomes periodic-
ally discontinuous. This is a nontrivial mechanism of eliminating the
overstrain of the chain during Its motion.

So we have described still a single example demonstrating a physical impor-
tance of singular points of a PBS. It seems plausible, however, that a si'.
milar behaviour may be intrinsic for large complicated systems, the biolo-
gical ones for instance. Such a reasoning agrees with the ideology of the
catastrophe theory (11).
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