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Abstract. The algorithms are developed for computer enumeration and gener-

ation of isomeric acyclic structures (alkanes, alkenes, alkynes, alkanols,

alkanals, alkanones, etc.), benzenoid hydrocarbons, and aza—benzenoids.

They are based on the common strategy which consists of representing a giv-

en structure by an integers sequence and the use of the induced order no-

tion.

INTRODUCTION

The object of this report is to present a convenient method for computer enumeration and gen-

eration of isomeric organic structures. The concept of chemical isomerism, introduced by

Berzelius (1), is over 150 years old and, in spite of this, is still being actively pursued

by both experimental and theoretical chemists (2). The study of the phenomenon of (organic

chemical) isomerism has always been considered as a vital part of theoretical (organic) chem-

istry (2-3). Therefore, our report should nicely fit into the scope of the Symposium.

The chemical (and mathematical) problem of enumerating (counting) the distinct isomers of a

specified composition is of long standing (2,4-34). The problem of generating (and display-

ing) the isomeric structures is much more recent (35-49) and attempts to solve it are intrin-

sically connected with the development of the high-speed computer hard-ware and soft-ware

(50). The latter problem, counting by generation, is also sometimes referred to as a direct

enumeration of isomers (51).

In the present work we will be concerned with the computer enumeration and generation of

structural isomers. Molecular structures will be represented by graphs in the standard way

(52-54). Thus, we reduce the chemical isomer enumeration problem to counting and displaying

the non-isomorphic molecular graphs. Here we will report the isomer count for various acyclic

structures (alkanes, CnH2n+2 alkenes, CnH2n alkynes, CnH2n_2 alkanols, CnH2n+iOH alkanals,

CnH2n+iCHO alkanones, CH2+2CO etc. ) and for some hexagonal planar systems (benzenoid hy-

drocarbons and aza-benzenoids).

THE OUTLINE OF APPROACH

The general strategy on which our approach rests consists of three steps: (i) The building of

a sequence from distinguished elements into an ordered set to represent a given structure;

(ii) The representing of a class of sequences assigned to the same structure by different

labeling or a class of structures defined by 'natural" symmetries by means of finding an
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extremal sequence according to the induced order; and (iii) The ordering of the isomeric

structures by means of the induced order.

The roots of this approach are in the works by Gordon and Davison (55), by Saunders (56), by

Balaban and Harary (57), and by Balaban (58), where these authors attempted to provide the

numerical notations for the ring systems.

As an induced order we have chosen the lexicographic order. The criterion used for selecting

the well-defined representative of the class is the lexicographic maximum. However, we could

have also taken the lexicographic minimum or a different ordering. The isomeric structures are

generated in the reverse lexicographic order.

In some cases (e.g. aza-benzenoids) we found that it is more convenient to order the isomers

by a different criterion, say by a binary value assigned to each structure.

Acyclic structures

Acyclic hydrocarbons (alkanes, CnH2n+2 alkenes, CnH2n alkynes, CnH2n2 etc.) are depicted

by (hydrogen-suppressed) trees in which the maximum valency of a vertex is four (52-54). A

tree is a connected graph with no cycles (59). We symbolize the tree by T. Acyclic structures

containing other atoms besides carbon (alkanols, CnH2n+iOH alkanals, CH2+iCHO alkanones,

CnH2n+2CO etc.) are depicted by (hydrogen-suppressed) rooted trees in which the maximal ver-

tex is also four. A rooted tree is a tree in which one "ertex has been dis-

tinguished in some way from others (60). Chemically it corresponds to a substituted carbon.

The term hydrogen-suppressed (rooted) trees means that we will consider only bare molecular

skeletons.

Trees (and rooted trees) with N vertices may be represented numerically by N-tuples of non-

negative integers smaller than N. The N-tuples of (rooted) trees can be produced in the fol-

lowing way. We map the (rooted) trees onto N-tuples of non-negative integers by induction:

the trivial (rooted) tree with one vertex is represented by i-tuple (0). In order to simplify

the following discussion we introduce a term the starting vertex for a vertex of a tree at

which we start N-tuple. In the case of rooted trees a root-vertex is a point at which N-tuple

starts. Thus, a given (rooted) tree with N>i vertices and M edges incident to the starting

vertex (the root-vertex) produces M (rooted) subtrees by removing the starting vertex (the

root-vertex) and all of its edges. The (rooted) subtrees (taking as the starting point (the

root-vertex) in the subtree the neighbour of the removed vertex) with L1, L2, ..., LM
ver-

tices (where L1+L2+. . .+LM=N-i) are by induction provided by L subtuples. We concatenate the

i-subtuple (N) and these N-i subtuples, and get a tuple of i+L1+L2÷. . .+LM=N components which

we define to be representative for the (rooted) tree.

As an illustrative example we give in Fig. 1 N-tuple representation of a branched tree with 5

vertices which depicts 2-methylbutane. All vertices were used one by one as starting points

of the sequences and it is clearly seen that the tree may have several different N-tuples. In

order to select a unique N-tuple representation of a given tree we use the concept of lexi-

cographic order. Thus, a K-tuple (a1 a2 ... aK) of integers is defined lexicographically

smaller then L-tuple (b1 b2 ... bL), if there exists an index j with ijL so that a=b for

iij and a<b or K<L and a=b for iiN. The unique N-tuple representation of a tree is

the lexicographically highest among all the possible representations

(12100) Fig. 1 N—tuples belonging to the tree depicting

(31000) 2-methylbutane. The lexicographically highest N-

(22000) tuple is indicated by an arrow.

1 (11200)
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Among the four different N-tuples representing the carbon skeleton of 2-methylbutane the lex-

icographically highest N-tuple : (3 1 0 0 0) represents the structure uniquely.

The starting point of N-tuple representing a rooted tree is the root-vertex.

I

(2 300010)

Two non-isomorphic (rooted) trees cannot have the same N-tuple. Therefore, we state the fol-

lowing theorem.

Theorem: Let T1 and T2 be two (rooted) trees with the same associated N-tuple A. Then T1 and

T2 are isomorphic (rooted) trees (isomorphism being "through" the associated N-tuple A).

Proof: (1) By induction: for N4 the assertion is clear.

(2) Let Y: T+A be mappings that map each vertex of T onto its element in A. These

are 1-1, so we can define : T1-,-T2 by
ti1o111,

i.e. cI(x)=I'1('I'1(x)) for all xcV(T1), c

being 1-1 too. Let us prove thatis an isomorphism. Let {x,y}eE(T1). (Note that V(T) and

E(T) stand for the vertex-set and edge-set of T).

(a) Suppose that neither x nor y is the root-vertex of T1. Then there exists a subtree L of
T1 such that {xy}cE(L). Acoording the definition of N-tuples, the image of L1 is a subtuple
of A,Yi(L)=A.. Let us take a subtree K of T2 and define it by K=Y1(A). (It is easy to
see that any acyclic graph, associated with a subtuple, is a subtree). Then K and L are

trees with the same associated tuple (namely A) and are, according to the inductive assump-

tion, isomorphic with isomorphism , i.e.
{c(x),(y)}cE(K)cE(T2).

(b) Suppose that x is the root-vertex of T1. Then y is the root of a subtree L. But (x) is

the root-vertex of T2 and according the inductive assumption (y) is the root of a subtree

of T2 so that {(x),(y)}cE(12), q.e.d. (Because we can replace T1 by 12 and

vice versa).

The computer programme was developed on the basis of the described method, the details of

which are available elsewhere (44). The programme generates the N-tuples representing (root-

ed) trees in reverse lexicographic order, i.e. starting with the most complicated structure

and ending with the chain.

Planar hexagonal structures

Planar hexagonal structures considered are benzenoid hydrocarbons and aza-benzenoids

containing one or more nitrogens. The skeletons of these systems are depicted by networks of

hexagons which are constructed in the plane by assembling h regular hexagons in such a way

that (i) two hexagons have exactly one common edge or are disjoint and (ii) the covered area

in the plane is simply connected. The number of hexagons h making up a given hexagonal struc-

ture is the degree of the structure.

For the numerical representation of a hexagonal structure we use the digits assigned to the
vectors covering the edges of the boundary of the structure and construct the sequence fol-
lowing the direction of vectors. The boundary of the hexagonal structure in the plane is a
cycle in a graph theoretical sense, because the covered area is simply connected (61). we
define two hexagonal structures to be equal if their boundaries are equal in the geometric
sense. Since the interior of the hexagonal structure is reconstructable because of the uni-
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formity of the interior as far as the boundary is known, we will represent a hexagonal struc-

ture only by its boundary and give a numerical description only of the boundary. The interior

of a polyhexagonal structure consists of vertices and edges which do not lie on the boundary

of the structure (61-62).

Considering the geometry of a single hexagon we can denote each edge by a vector in the plane

and each of the six vectors by a digit. The orientation of vectors is arbitrarily taken to be
clockwise. Similarly, a digit 1 is arbitrarily assigned to the left vertical vector of the
hexagon. This is shown below.

cc'
In Fig. 2 we give the vector description of the boundary of a graph depicting triangulene

(phenalene). Graphs depicting benzenoid hydrocarbons are called benzenoid graphs (54,63). We

symbolize graphs depicting hexagonal structures by G.

Fig. 2 The vector description of a benzenoid

graph G depicting triangulene

We note that the edges of hexagons making up G in Fig. 2, labeled with 1 and 4, 2 and 5, and

3 and 6 coincide in the parent structure. These pairs of edges are said to be inverse to each

other.

The boundary of G may be labeled by different sequences of numbers depending on at which edge

we start the sequence. Let us start the sequence at the edge of G labeled by the asterisk.

The sequence, thus obtained, which represents a numerical notation of G, is given below,

(1 2 3 4 3 4 5 6 5 6 1 2)

However, it is clear that one may start the sequence at any edge on the boundary. Therefore,

the above sequence is not unique. We give below all sequences generated for G by cyclic per-

mutations of the digits on the boundary starting from the edge next to the edge denoted by
the asterisk,

We choose among all these sequences that one (denoted by an arrow) which represents the lexi-

cographic maximum as the unique representation of G.

(2 3 4 3 4 5
(3 4 3 4 5 6
(4 3 4 5 6 5
(3 4 5 6 5 6
(4 5 6 5 6 1
(5 6 5 6 1 2

-'- (6 5 6 1 2 1
(5 6 1 2 1 2
(6 1 2 1 2 3
(1 2 1 2 3 4
(2 1 2 3 4 3

6 5 6 1 2 1)
5 6 1 2 1 2)
6 1 2 1 2 3)
1 2 1 2 3 4)
2 1 2 3 4 3)
1 2 3 4 3 4)
2 3 4 3 4 5)
3 4 3 4 5 6)
4 3 4 5 6 5)
3 4 5 6 5 6)
4 5 6 5 6 1)
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The generating algorithm works in an inductive way using the fact that the hexagonal struc-

ture of degree 1, i.e. planar six-membered ring, is known. Assuming that all hexagonal struc-

tures of degree h are generated, a hexagonal structure of degree h÷1 can be obtained by join-

ing a new hexagon at the boundary edges of the structure of degree h. In order to generate

the whole set of isomeric hexagonal structures of degree h+1 obtainable from the given parent

structure of degree h, all edges on the boundary of the parent structure must be considered

as joining positions with the inverse edges of the added hexagon. If the inverse digits appear

in the sequence which are adjacent, they denote inner edges and should be omitted from the

sequence.

In the case of aza-benzenoids the edges leading to black dots, representing the positions of

.nitrogens in the structure, will be underlined in the boundary sequence. Below we give as an

example the boundary sequence for 1,2,5,6-tetraazanaphthalene.

(6 1232345)

If only the vertices of valency 2 in G are considered and if those underlined are labeled by

unity and all others by zero, the following binary vector (b1, b2, ..., b8) representing G is

obtained,

(1,1,0,0,1,1,0,0)

From this binary vector we can compute the integer characteristic for a given aza-benzenoid,

the so-called binary value of G (64),

b 2
-1

where rn is the number of vertices with valency two in G. Therefore, aza-benzenoids belonging

to a given parent polyhex can be ordered according to their binary values instead of using

the lexicographic ordering. We could, of course, if we wanted, use the lexicographic order

for sorting aza-benzenoids, but it is more convenient to order them by means of their binary

values since they are structures whose skeletons consist of only two kinds of atoms, i.e.

they represent an example of natural binary structures. Thus aza-benzenoids were generated
and ordered (by increased binary value) according to the above approach. Further details a-

bout the approach and the description of the computer programme may be found elsewhere (64).

RESULTS AND DISCUSSIONS

Because of the limited space alloted for the article we report here only a few results ob-

tained. However, additional numerical and graphical results may be obtained from the authors

on request.

Acyclic structures

In Table 1 we give the number of isomeric alkanes, alkenes and alkynes with n carbon atoms.
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TABLE 1. The number of structural isomers of alkanes, alkenes and alkynes

with n carbon atoms

Number

of carbon
atoms n

Alkanes

CH22

Alkenes

CH2

Alkynes

CH22

2 1 1 1

3 1 1 1

4 2 3 2

5 3 5 3

6 5 13 7

7 9 27 14

8 18 66 32

9 35 153 72

10 75 377 171

11 159 914 405

12 355 2281 989

13 802 5690 2426

14 1858 14397 6045

15 4347 36564 15167

16 10359 93650 38422

17 24894 240916 97925

18 60523 623338 251275

19 148284 1619346 648061

20 366319 4224993 1679869

In Table 2 we give, as an example, the diagrams for all alkane graphs with 10 vertices.

TABLE 2. Alkane skeletons with 10 atoms (a copy of a computer 3utput)

The total number of isomeric alkyl alcohols (alkanols) for a given number of carbon atoms is

reported in Table 3. In this table we also report the isomer count for primary, secondary,

and tertiary alcohols, respectively.
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TABLE 3. The number of alkanols

Number

of carbon

Alkanols (alkyl alcohols)_CH210H

Primary Secondary Tertiary

atoms n alcohols alcohols alcohols Total

1 1 1

2 1 1

3 1 1 2

4 2 1 1 4

5 4 3 1 8

6 8 6 3 17

7 17 15 7 39

8 39 33 17 89

9 89 82 40 211

10 211 194 102 507

11 507 482 249 1238

12 1238 1188 631 3057

13 3057 2988 1594 7639

14 7639 7528 4074 19241

15 19241 19181 10443 48865

16 48865 49060 26981 124906

17 124906 126369 69923 321198

18 321198 326863 182158 830219

19 830219 849650 476141 2156010

20 2156010 2216862 1249237 5622109

The number of isomeric alkanals, CH2lCHO and alkylamines, CH21NH2 is identical to the

isomeric count for primary alcohols, C H CH OH. The number of isomeric alkanones,C H CO,
n 2n+1 2 n 2n+2

is identical to the isomer count for secondary alcohols, CnH2n+2CHOH•

The results in Tablel and Table 3 are checked against the values reported by Read (29) and

in all cases of overlap these two sets of values agree.

Though being very efficient for generating all (rooted) trees of a given kind, the method

proved to be inadequate when only counts were wanted. For example, in order to obtain only

the numbers given by Harary (65) for trees up to 26 vertices, it would have been necessary to

spend about 2 000 000 seconds or 24 days of CDC-CYBER 76 CPU-time, as the numbers increase

exponentially with a factor of about 2.9 for every next higher number of vertices and the

CPU-time augments even faster. Fortunately, it was found after an extensive analysis that the

representation by N-tuples provides a possibility for a much cheaper way to get these counts.

The method leads to recursive sums of the same form as those obtained from the evaluation of

the Pólya's formulae (17), and straightforward optimization by hand leads to algorithms which

need for structures up to n vertices storage of the same order n and time of the order n2logn

in the worst case. This contrasts pleasantly with the order 13n for the direct evaluation of

the recursive functions or the order 29n for the counting by generation. Obviously, trees

with very large number of vertices n need multiple precision arithmetics for the counters,

and therefore, an additional factor n for storage, and n2 for time must be then applied. We

computed these isomer counts based on our method on TR 445 up to a number n=28O of vertices

(we stopped there because higher counts would not fit together with the number n on a single

132 character print line) using only 750 CPU-seconds (equivalent to about 40 CPU-seconds on

a CDC-CYBER 76).
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Planar hexagonal structures

Benzenoid hydrocarbons were generated up to degree 11. In Table 4 we give the number of ben-

zenoids. We note that here we do not give the number of isomeric structures in the tradition-

al chemical view, but according to number of assembled hexagons (47L

TABLE 4. The number of benzenoid hydrocarbons

Number of

hexagons h

Our results Results from literature

Cata—

condensed Total

Cata-

condense? Totalb

1

2

3

4

5

6

7

8

9

10

1

1

2

5

12

36

118

411

1489

5572

1

1

3

7

22

81

331

1435

6505

30086

1

1

2

5

12

37

123

446

1689

6693

1

1

3

7

22

82

333

1448

6572

30490

a
F. Harary and R.C. Read, Proc. Edinburgh Math. Soc. ser. II

17, 1 (1970).

b
W.F. Lunnon, in Graph Theory and Computing, Edited by R.C.

Read, Academic, New York, 1972, p. 87.

TABLE 5. The computer output containing all strictly planar cata-condensed

benzenoids of degree 7 sorted in reverse lexicographic order
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Since in our work we considered only geometrically planar benzenoids, non-planar structures

like helicenes (66) are not included. In addition, we did not include in our study rings of

hexagons, i.e. circulenes (47,67-69) either. This makes our total numbers different from

those reported by Lunnon for h6, because he considered circulenes. Our numbers for cata-
condensed benzenoids differ from those reported by Harary and Read for h6, because they in-
cluded helicenes in their work.

In Table 5 we give as an example a computer output containing all strictly planar cata-con-
densed benzenoid hydrocarbons with h=7.

Here we also report the isomer count for poliaza-benzenoids. In Table 6 we give the number of

isomeric aza-benzenoids up to h=1O with 1, 2, ..., 8 nitrogen atoms.

TABLE 6. The number of isomeric aza-benzenoids

Number of
hexagons h

Number of nitrogen atoms
1 2 3 4 5 6 7 8

1 1 3 3 3 1 1

2 2 10 14 22 14 10 2 1

3 10 48 109 194 216 187 100 42
4 43 243 730 1620 2442 2802 2276 1410
5 210 1326 4918 12982 24611 35384 38500 32326
6 1026 7349 32043 98765 223717 388936 525764 561378
7 5130 41030 204417 720519 1894520 3862098 6229444 8069192
8 25770 228694 1277866 5073805 15169211 35475697 66405417 101090191
9 130350 1270663 7860506 34707100 116213717 306558871 652844870 1141425811

10 661458 7031737 47678819 231739037 8588186640 2521963738 6018548260 11879179287

TABLE 7. The computer output containing all isomeric aza-naphthalenes ordered

according their increasing binary values. Black dots denote the positions of

nitrogens in the structure.

cc
03

cc

cc cc cc
cc cc cccccc

ccOcx)
cc cc cc cc cc

cccocococc
cc cc cc cc

cc cc cc cc cc cc cc cc cc
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The example of the computer output containing isomeric aza-naphthalenes is given in Table 7.

Other numerical results and the corresponding diagrams may be obtained on request from the

Computer Centre of the University of Düsseldorf.

CONCLUSI ONS

Here we presented a novel method for computer generation of isomeric structures. It has been

applied to some acyclic and cyclic planar structures. The method has several excellent fea-

tures: (i) It enumerates isomeric structures with high accuracy as any method in literature;

(ii) It produces directly graphs of studied structures; and (iii) It may serve as a suitable

basis for developing a general algorithm for chemical synthesis by computer. However, we have

still to find an algorithm to generate efficiently the stereo-isomers in order to make our

approach chemically realistic and competitive to other proposals (29,37-43). Work in this di-

rection is in progress.
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