ANALYTICAL CHEMISTRY DIVISION COMMISSION ON ELECTROANALYTICAL CHEMISTRY*

CONSISTENCY OF pH STANDARD VALUES WITH THE CORRESPONDING THERMODYNAMIC ACID DISSOCIATION CONSTANTS

(Technical Report)
Prepared for publication by
M. FILOMENA CAMOES ${ }^{1}$; M. J. GUIOMAR LITO ${ }^{1}$; M. ISABEL A. FERRA ${ }^{2}$; AND ARTHUR K. COVINGTON ${ }^{3}$
${ }^{1}$ Centro de Electroquímica e Cinética da Universidade de Lisboa, 1294 Lisboa Codex, Portugal
${ }^{2}$ Universidade da Beira Interior, 6200 Covilhã, Portugal
${ }^{3}$ Department of Chemistry, University of Newcastle, Newcastle-upon-Tyne, NE1 7RU, UK

*Membership of the Commission during the preparation of this report (1986-96) was as follows:
Chairman: M. Senda (Japan; 1985-89); R. A. Durst (USA; 1987-91); R. P. Buck (USA; 1991-96); Vice-Chairman: R. Kalvoda (Czech Republic; 1987-89); M. Senda (Japan; 1989-91); Secretary: R. A. Durst (USA; 1987-89); K. M. Kadish (USA; 1989-91); K. Tóth (Hungary; 1991-95); Titular Members: R. P. Buck (USA; 1989-91); J. Buffle (Switzerland; 1987-89); M. Gross (France; 1987-91); K. M. Kadish (USA; 1987-89); M. L’Her (France; 1991-95); S. Rondini Cavallari (Italy; 1991-95); K. Stulik (Czech Republic; 1991-95); K. Tóth (Hungary; 1987-91); Y. Umezawa (Japan; 1991-95); Associate Members: A. M. Bond (Australia; 1989-95); P. Buck (USA; 1987-89); K. Cammann (FRG; 1989-95); M. Filomena Camoes (Portugal; 1987-95); W. Davison (UK; 1987-89); A. G. Fogg (UK; 1987-95); L. Gorton (Sweden; 1994-97); W. R. Heineman (USA; 1991-95); H. Kao (China; 1987-89); R. C. Kapoor (India; 1987-89); S. Kihara (Japan; 1991-95); W. F. Koch (USA; 1991-95); W. Kutner (Poland; 1987-95); T. Kuwana (USA; 1989-91); L'Her (France; 1989-91); J. G. Osteryoung (USA; 1987-89); G. Prabhakara Rao (India; 1989-93); S. Rondinini Cavallari (Italy; 1987-91); K. Stulik (Czech Republic; 1987-89); Y. Umezawa (Japan; 1987-91); H. P. van Leeuwen (Netherlands; 1987-93); E. Wang (China; 1987-95); J. Wang (USA; 1991-95); National Representatives: S. S. M. Hassan (Arab Republic of Egypt; 1994-95); G. E. Batley (Australia; 1985-91); B. Gilbert (Belgium; 1986-89); M. Kauffman (Belgium: 1992-95); I. R. Gutz (Brazil; 1994-95); H.-Y. Chen (China; 1990-91); A. A. Vlcek (Czech Republic; 1986-91); H. B. Nielsen (Denmark; 1986-89); H. B. Kristensen (Denmark; 1989-95); M. L'Her (France; 1986-89); K. Cammann (FRG; 1987-89); R. Naumann (FRG; 1994-95); E. Lindner (Hungary; 1987-91); H. Kim (Korea; 1994-95); G. Prabhakara Rao (India; 1986-89); R. C. Kapoor (India; 1989-91); W. F. Smyth (Ireland; 1986-91); E. Grushka (Israel; 1986-91); T. Mussini (Italy; 1989-95); K. Izutsu (Japan; 1987-91); H. P. van Leeuwen (Netherlands; 1994-95); A. J. McQuillan (New Zealand; 1987-91); Z. Galus (Poland; 1986-91); D. Bustin (Slovak Republic; 1994-95); B. Pihlar (Slovenia; 1994-95); D. R. Groot (South Africa; 1994-95); J. Galvez (Spain; 1987-91); G. Johansson (Sweden; 1986-91); G. Somer (Turkey; 1987-91); F. Kadirgan (Turkey; 1994-95); A. K. Covington (UK; 1987-95); J. F. Coetzee (USA; 1987-91); W. F. Koch (USA; 1989-91); I. Piljac (Yugoslavia; 1986-91).

[^0]
Consistency of pH standard values with the corresponding thermodynamic acid dissociation constants (Technical Report)

Abstract

With the simplest possible assumptions on the ion activity coefficients, namely a DebyeHückel approach, pH values of eleven standard buffer solutions have been calculated from the corresponding thermodynamic acidity constants, $K_{(I \rightarrow 0)}$, and compared to the electrometrically assigned $\mathrm{pH}(\mathrm{S})$ values (by Harned cell method). Agreement is within ± 0.01 in the temperature range $10-40^{\circ} \mathrm{C}$ for all standards, except carbonate. The results for the phthalate, acetate, phosphate and carbonate systems at $25^{\circ} \mathrm{C}$ indicate that this consistency is improved if specific ion interactions are taken into account, according to the Pitzer theory.

INTRODUCTION

It is universally accepted [1] that pH of an unknown solution $\mathrm{X}, \mathrm{pH}(\mathrm{X})$, is defined in relative terms through the OPERATIONAL DEFINITION derived from the Nernst equation
$\mathrm{pH}(\mathrm{X}) \cdot \mathrm{pH}(\mathrm{S})=[E(\mathrm{~S})-E(\mathrm{X})] F /(R T \ln 10)$
in which comparison is made with a reference solution S of assigned $\mathrm{pH}(\mathrm{S}) . E(\mathrm{~S})$ and $E(\mathrm{X})$ are emf values [2] of the OPERATIONAL CELL

Reference	KCl	Solution(X) or Olectrode	H_{2}	Pt
E $\geq 3.5 \mathrm{~mol} \mathrm{~kg}^{-1}$)	Solution(S)			

when the hydrogen gas electrode, or its substitute, is transferred from solution $\mathrm{X}, E(\mathrm{X})$, to solution S , $E(\mathrm{~S})$, each of them establishing a liquid-junction with the electrolyte of the reference half-cell. $\mathrm{pH}(\mathrm{S})$ values are CONVENTIONALLY ASSIGNED through a methodology [3] based on the emf of Harned type cells [4] without liquid-junction. These values are evaluated for standard buffer solutions (of ionic strength, I, not exceeding 0.1 mol kg -1, to which Cl^{-}has been added in various concentrations) by measuring emf values of the cell:
$\mathrm{Pt}(\mathrm{Pd})\left|\mathrm{H}_{2}(101325 \mathrm{~Pa})\right|$ Buffer solution $\mathrm{S}, \mathrm{Cl}^{-}|\mathrm{AgCl}| \mathrm{Ag}$
$E=E^{0}-(R T \ln 10 / F) \lg \left[m_{\mathrm{H}} m_{\mathrm{C} 1} \gamma_{\mathrm{H}} \gamma_{\mathrm{Cl}} /\left(m^{0}\right)^{2}\right]$
where $m^{0}=1 \mathrm{~mol} \mathrm{~kg}^{-1}$ represents the standard state condition.
$\mathrm{p}\left(a_{\mathrm{H}} \gamma_{\mathrm{Cl}}\right) \equiv-\lg \left(m_{\mathrm{H}} \gamma_{\mathrm{H}} \gamma_{\mathrm{Cl}} / m^{0}\right)=\left(E-E^{0}\right) F /(R T \ln 10)+\lg \left(m_{\mathrm{Cl}} / m^{0}\right)$
A quantity, $\mathrm{p}\left(a_{\mathrm{H}} \gamma_{\mathrm{C}}\right)$, is expressed in terms of known and experimentally determined quantities, m_{Cl}, E and E^{0}. E^{0} is derived from the emf, E, of the cell
$\mathrm{Pt}\left|\mathrm{H}_{2}(101325 \mathrm{~Pa})\right| 0.01 \mathrm{~mol} \mathrm{~kg}{ }^{-1} \mathrm{HCl} \mid \mathrm{AgCl}, \mathrm{Ag}$
and calculated from eq. 2, with $\gamma_{\mathrm{H}} \gamma_{\mathrm{Cl}}=\gamma_{ \pm}^{2}$ where $\gamma_{ \pm}$is the mean ionic activity coefficient of HCl in $0.01 \mathrm{~mol} \mathrm{~kg}^{-1}$ solution [3].

Extrapolation of $\mathrm{p}\left(a_{\mathrm{H}} \gamma_{\mathrm{C}}\right)$ values to $m_{\mathrm{Cl}}=0$, with the use of equation (3) [5], leads to $\mathrm{p}\left(a_{\mathrm{H}} \gamma_{\mathrm{Cl}}\right)^{0}$ from which $\mathrm{p} a_{\mathrm{H}}$ can be calculated
$\mathrm{p} a_{\mathrm{H}}=\mathrm{p}\left(a_{\mathrm{H}} \gamma_{\mathrm{Cl}}\right)^{0}+\lg \gamma_{\mathrm{Cl}}$
$\lg \gamma_{\mathrm{Cl}}$ is approximated by the Debye-Hückel model
$\lg \gamma_{1}=-\frac{A z_{i}^{2}\left(I / \mathrm{mol} \mathrm{kg}^{-1}\right)^{1 / 2}}{1+B a\left(I / \mathrm{mol} \mathrm{kg}^{-1}\right)^{1 / 2}}$
in which the Bates-Guggenheim convention for the ion size parameter [2] has been introduced, $B a=$ 1.5. A is the Debye-Hückel limiting slope and z_{i} is the ion electric charge
$\lg \gamma_{\mathrm{Cl}}=-\frac{A\left(I / \mathrm{mol} \mathrm{kg}^{-1}\right)^{1 / 2}}{1+1.5\left(I / \mathrm{mol} \mathrm{kg}^{-1}\right)^{1 / 2}}$

The $\mathrm{p} a_{\mathrm{H}}$ values thus obtained are conventionally adopted as reference values
$\mathrm{p} a_{\mathrm{H}}=\mathrm{pH}(\mathrm{S})$
All measured $\mathrm{pH}(\mathrm{X})$ values depend on the material chosen for reference solution $[6,7]$, as a result of
(i) the validity of the Bates-Guggenheim convention for each standard solution
(ii) different contribution of liquid junction potential for each standard solution, as a result of different composition and ionic mobility.

Definition	$\mathrm{pH}=-\lg a_{\mathrm{H}}$
Standard electrode potential	E^{0} / V
Cell for determination of standard potential and equation describing its emf	$\mathrm{Pt}\left\|\mathrm{H}_{2}\right\| \mathrm{HCl}(0.01 \mathrm{~mol} \mathrm{~kg}$ $\left.E=E^{-1}\right)\|\mathrm{AgCl}\| \mathrm{Ag}$ $E T \ln 10 / F) \lg \left(m_{\mathrm{H}} m_{\mathrm{Cl}} \gamma_{\mathrm{H}} \gamma_{\mathrm{Cl}}\right)$
Harned cell for assignment of $\mathrm{pH}(\mathrm{S})$ values and equation describing $\mathrm{pH}(\mathrm{S})$	$\mathrm{Pt}\left\|\mathrm{H}_{2}\right\| \mathrm{S}, \mathrm{Cl}^{-}\|\mathrm{AgCl}\| \mathrm{Ag}$ $\mathrm{pH}(\mathrm{S})=-\lg \left(a_{\mathrm{H}} \gamma_{\mathrm{c}}\right)^{0}+\lg \gamma_{\mathrm{Cl}}$
Operational cell for measurement of $\mathrm{pH}(\mathrm{X})$ from $\mathrm{pH}(\mathrm{S})$ and equation describing $\mathrm{pH}(\mathrm{X})$	$\mathrm{Ref} .\mathrm{Electrode}\left\|\mathrm{KCl}\left(\geq 3.5 \mathrm{~mol} \mathrm{~kg}^{-1}\right)\right\| \mathrm{X}$ or S $\left\|\mathrm{H}_{2}\right\| \mathrm{Pt}$ $\mathrm{pH}(\mathrm{X})=\mathrm{pH}(\mathrm{S})+\left(E_{\mathrm{S}}-E_{\mathrm{x}}\right) F / R T \ln 10$

Fig. 1. Conventionally procedures for the assignment of standard $\mathrm{pH}(\mathrm{S})$ values to standard buffers (RVS, PS and S) and measurement of $\mathrm{pH}(\mathrm{X})$ of solution under test.

Figure 1 summarises the conventional procedures for estimating the thermodynamically unattainable quantity pH . Outstanding research problems are
(i) Evaluation or correction of the residual liquid junction contribution included in the $E(\mathrm{~S})-E(\mathrm{X})$ term, so that $\mathrm{pH}(\mathrm{X})$ values are calculated independently of liquid junction potentials.
(ii) Validity of the conventional assignment of $\mathrm{pH}(\mathrm{S})$ values and consistency with $\mathrm{pH}(\mathrm{S})$ values evaluated through other models of electrolyte solutions in order to recommend a broader and more realistic basis.
$\mathrm{pH}(\mathrm{S})$ values are conventionally assigned to chosen reference buffer solutions which are variously referred to as RVS (potassium hydrogen phthalate), PS (NBS/NIST reference buffers $2<\mathrm{pH}<10$) and S (other recommended buffer standards) [1].
An alternative method of assignment of pH to reference buffers, has been proposed based on the thermodynamic $(I=0)$ acid dissociation constants of the weak acids involved. With the use of computational techniques, the method has initially been developed for triacids, $\mathrm{H}_{3} \mathrm{~A}$ [8], and is redrawn (Fig.2) for diacids, $\mathrm{H}_{2} \mathrm{~A}$.

Fig. 2. Flow chart for iterative computer program based on the Debye-Hückel model

METHODOLOGY

Expressing the thermodynamic acid dissociation constants, K_{1} and K_{2} in terms of the stoichiometric equilibrium constants, K_{1}^{\prime} and K_{2}^{\prime}, assuming the activity coefficient $\gamma_{\mathrm{H}_{2} \mathrm{~A}}=1$ and designating the activity coefficients of singly and doubly charged species by γ_{1} and γ_{2}, gives
$K_{1}=\frac{a_{\mathrm{HA}^{2}} a_{\mathrm{H}}}{a_{\mathrm{H}_{2} \mathrm{~A}}}=\frac{m_{\mathrm{HA}} m_{\mathrm{H}}}{m_{\mathrm{H}_{2} \mathrm{~A}}} \frac{\gamma_{\mathrm{HA}} \gamma_{\mathrm{H}}}{\gamma_{\mathrm{H}_{2} \mathrm{~A}}}=K_{1}^{\prime} \gamma_{1}^{2}$
$K_{2}=\frac{a_{\mathrm{A}} a_{\mathrm{H}}}{a_{\mathrm{HA}}}=\frac{m_{\mathrm{A}} m_{\mathrm{H}}}{m_{\mathrm{HA}}} \frac{\gamma_{\mathrm{A}} \gamma_{\mathrm{H}}}{\gamma_{\mathrm{HA}}}=K_{2}^{\prime} \gamma_{2}$
All concentrations may be evaluated by combining equilibrium, mass balance and electroneutrality equations

$$
\begin{align*}
& m=m_{\mathrm{H}_{2} \mathrm{~A}}+m_{\mathrm{HA}}+m_{\mathrm{A}} \tag{10}\\
& \mathrm{~m}_{\mathrm{H}}+m_{\mathrm{M}}=m_{\mathrm{OH}}+m_{\mathrm{HA}}+2 \mathrm{~m}_{\mathrm{A}} \tag{11}
\end{align*}
$$

where a, m and γ represent the activity, molality and activity coefficient, respectively, of the species

Fig. 3. Flow chart for iterative computer program based on the Pitzer model.

indicated as subscripts; ionic charges have been omitted for simplicity, m is the total molality of acid and salt in the buffer mixture and m_{M} is the alkali metal molality relevant for the buffer system under consideration.

From equations (8-11), one obtains
$m_{\mathrm{H}}^{3}+m_{\mathrm{H}}^{2}\left(m_{\mathrm{M}}+K_{1}^{\prime}\right)+m_{\mathrm{H}}\left(m_{\mathrm{M}} K_{1}^{\prime}+K_{1}^{\prime} K_{2}^{\prime}-m K_{\mathrm{l}}^{\prime}-K_{\mathrm{w}}\right)+m_{\mathrm{M}} K_{1}^{\prime} K_{2}^{\prime}-2 m K_{1}^{\prime} K_{2}^{\prime}-K_{1}^{\prime} K_{\mathrm{w}}=0$
where the term $K_{\mathrm{w}} K_{1}^{\prime} K_{2}^{\prime}$, where K_{w} is the ionic product of water, has been neglected.
The activity coefficients are calculated separately, assuming that
$\gamma_{1}=\gamma_{\mathrm{Cl}}=\gamma$
$\gamma_{2}=\gamma^{4}$
whose calculation requires the knowledge of the ionic strength I.
Starting with a reasonably estimated value of $I / \mathrm{mol} \mathrm{kg}^{-1}\left(I=m-m_{\mathrm{a}}\right.$, where m_{a} is the analytical molality of the acid in the buffer mixture) one can iterate all the parameters until agreement to within 10^{-6} is reached. The Bates-Guggenheim convention is adopted for $\gamma_{\mathrm{Cl}}, B a=1.5$, but calculations were also

Fig.4. Differences between $\mathrm{pH}(\mathbf{S})$ values and those calculated as a funtion of temperature. $\Delta \mathrm{pH}=\mathrm{pH}($ calc $)-\mathrm{pH}(\mathrm{S})$

performed with $\quad B a=1.0$ and 2.0. Moreover, the species distribution fractions, α_{i}, buffer capacities, β, species activity coefficients, γ_{i}, ionic strength, I and pH values are given. The iterative computer program was developed on the basis of the flow chart shown in Fig. 2.

The activity coefficients, γ_{i}, may also be calculated by means of the Pitzer theory [9] in which specific ion interactions are taken into account. Determination of γ_{i} values by following a similar methodology, enables one to evaluate pH and related quantities, as shown in Fig. 3.

RESULTS

Table 2 shows the differences between pH values calculated from K_{1}, K_{2}, K_{3}, by using Debye-Hückel equation ($B a=1.0 ; 1.5 ; 2.0$) or from Pitzer theory at $25^{\circ} \mathrm{C}$ and those conventionally assigned at 0,25 and $50^{\circ} \mathrm{C}$.
Figure 4 shows differences between the $\mathrm{pH}(\mathrm{calc})$ and $\mathrm{pH}(\mathrm{S})$ values when the Bates-Guggenheim convention is adopted. For all standard buffers studied [10-18], except carbonate and tartrate, the consistency between $\mathrm{pH}(\mathrm{S})$ and $\mathrm{pH}($ calc $)$ is satisfactory, i.e. it equals to ± 0.01 in the temperature range $10-40^{\circ} \mathrm{C}$. For the tartrate buffer much closer agreement can be reached if different literature values [19] of acidity constants are used. This may bring questions about the correctness of the reported values [18] which have been, nevertheless, selected for the consistency of data source. At lower and higher temperatures results may indicate incorrect $\mathrm{pH}(\mathrm{S})$ or $\mathrm{p} K$ values.

With the use of literature data of Pitzer parameters [9, 20], for the standard pH buffers [21], the evaluation of pH for the acetate buffers as well as for the equimolal phosphate buffer, the blood phosphate buffer and the carbonate buffer at $25^{\circ} \mathrm{C}$ was possible [20]. Recently published value for the potassium hydrogen phthalate buffer [22] is also included in the calculation of the differences relative to conventionally assigned pH values, presented in Table 2.

DISCUSSION AND CONCLUSIONS

If the Bates-Guggenheim convention is used for calculating the ionic activity coefficients for the standard buffer solutions studied, then differences between the assigned pH values and those calculated here are smaller than 0.01 , in the temperature range $10-40^{\circ} \mathrm{C}$, except carbonate and tartrate. With the individual species activity coefficients evaluated by means of the Pitzer theory, the pH (calc. Pitzer) equals $\mathrm{pH}(\mathrm{S})$ for the phosphate and 0.01 m acetate systems. This difference is larger for the carbonate buffer and equals to 0.016 but this is reduced to -0.008 when the calculations were repeated with the $\mathrm{p} K_{1}$ and $\mathrm{p} K_{2}$ values of

TABLE 1 Conventionally assigned $\mathrm{pH}(\mathrm{S})$ values for standard buffer solutions（S，PS），and RVS）of well defined compositions at various temperatures．The symbol m is used to denote mol kg ${ }^{-1}$

π^{2}				$\frac{2}{9}$	$\underset{O}{\infty}$	$\begin{aligned} & \mathbf{N}_{0} \\ & 0 \\ & 0 \end{aligned}$			$\begin{aligned} & 8 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	\hat{N}							
0		$\left\|\begin{array}{c} \mathbf{U} \\ 0 \\ \alpha \\ \alpha \end{array}\right\|$	$\begin{aligned} & a \\ & \underset{\sim}{2} \\ & \hline \end{aligned}$	$\begin{aligned} & N \\ & \\ & \text { N } \end{aligned}$	$\begin{array}{ll} \lambda_{1} \\ \hat{n} \\ \\ \end{array}$	$\left\|\begin{array}{c} n \\ \underset{\sim}{n} \end{array}\right\|$			$\frac{N}{0}$			$$			$\left\lvert\, \begin{aligned} & +\infty \\ & \infty \\ & \infty \end{aligned}\right.$	$\left\lvert\, \begin{gathered} 0 \\ \infty \\ \infty \\ \infty \end{gathered}\right.$	¢
0		$\left\|\begin{array}{c} \underset{\tilde{N}}{\hat{n}} \\ \sim \end{array}\right\|$	$\stackrel{0}{0}$	$\begin{gathered} N \\ \underset{7}{N} \end{gathered}$					$\begin{aligned} & 20 \\ & \underset{\sim}{2} \\ & \end{aligned}$	$\begin{aligned} & \infty \\ & \underset{\sim}{2} \\ & \end{aligned}$							
2		$\begin{aligned} & \pm \\ & \mathbf{2} \\ & 0 \\ & \hline \end{aligned}$		$\left\|\begin{array}{c} \hat{2} \\ \hat{心} \end{array}\right\|$	$\begin{gathered} 2 \\ 0 \\ 0 \end{gathered}$					\mathfrak{c}	$\begin{gathered} \infty \\ \infty \\ \infty \\ 0 \end{gathered}$	$\begin{gathered} 0 \\ 0 \\ 0 \\ 0 \end{gathered}$	0	$\} \begin{gathered} \infty \\ \infty \\ \infty \\ \infty \end{gathered}$	$\left\|\begin{array}{c} 0 \\ \infty \\ \infty \end{array}\right\|$	$\begin{gathered} 0 \\ \infty \\ \infty \\ 0 \end{gathered}$	－
0		$\left\|\begin{array}{c} \hat{n} \\ \underset{\sim}{\prime} \end{array}\right\|$	$\underset{\sim}{\underset{\sim}{2}}$	$\stackrel{N}{N}$	$\underset{\sim}{G} \underset{\sim}{N}$								－				
n		$\left\|\begin{array}{c} \mathscr{B} \\ \underset{\sim}{\dot{B}} \end{array}\right\|$		$\begin{aligned} & \hat{0} \\ & 0 \\ & \dot{0} \end{aligned}$									＋				
x_{2}^{2}	镸药	$\left\|\begin{array}{l} 8 \\ 8 \\ -8 \end{array}\right\|$	$\begin{aligned} & \infty \\ & \stackrel{2}{2} \\ & \underset{\sim}{2} \end{aligned}$	$\left.\begin{array}{\|c} \hat{\alpha} \\ \underset{m}{2} \end{array} \right\rvert\,$	\dot{i}				$\stackrel{\infty}{\infty} \underset{+}{\infty}$	$\underset{\sim}{2}$			$\left\{\begin{array}{l} 8 \\ 0 \\ 0 \\ \dot{r} \end{array}\right.$	$\frac{0}{8}$	$\frac{a}{8}$	$\underset{\sim}{\underset{\sim}{\sim}}$	－
$\mathscr{2}$	若岩	$\begin{aligned} & \infty \\ & \infty \\ & \infty \\ & m \end{aligned}$	$\left\lvert\, \begin{aligned} & 0 \\ & \infty \\ & \infty \\ & \hline \end{aligned}\right.$						$i \stackrel{i}{i}$	\dot{m}		$\stackrel{\rightharpoonup}{c} \underset{\substack{c}}{\underset{\sim}{c}}$					
\sim	范志	$\left\|\begin{array}{l} \vec{\pi} \\ \underset{m}{2} \end{array}\right\|$	$\stackrel{\rightharpoonup}{\mathrm{g}}$	$\begin{gathered} \mathrm{N} \\ \hat{0} \\ \mathrm{~m} \end{gathered}$					$\begin{aligned} & 0 \\ & \\ & \text { n } \end{aligned}$				－				
2	䔍荡								$\stackrel{\underset{\sim}{c}}{\stackrel{\rightharpoonup}{c}}$	\mathfrak{c}		$\stackrel{\rightharpoonup}{2} \underset{\sim}{\stackrel{\rightharpoonup}{n}}$	促	－	0	－	荌
\sim								20		－	8		5	尔		$\stackrel{\text { d }}{\text { i }}$	$\stackrel{\text { q}}{\text { a }}$
	Ho	\bigcirc	n	O	\cdots	N	\cdots	\cdots	\cdots	－	\％	\％	${ }^{5}$	$\stackrel{ }{2}$	¢	\bigcirc	2

TABLE 2 Differences $(\Delta \mathrm{pH})=\mathrm{pH}(\mathrm{calc})-\mathrm{pH}(\mathrm{S})$ between pH values calculated from known acid dissociation, K_{1}, $K_{2}, K_{3},\left({ }^{*}\right)$ by using Debye-Hückel equation ($B a$) and those conventionally assigned at 0,25 and $50^{\circ} \mathrm{C}$, or by Pitzer theory, at $25^{\circ} \mathrm{C}$.

SOLUTION	$0^{0} \mathrm{C}$			$25^{0} \mathrm{C}$				$50^{0} \mathrm{C}$		
(*)	$B a=1.0$	$B a=1.5$	$B a=2.0$	$B a=1.0$	$B a=1.5$	Ba=2.0	Pitzer	$B a=1.0$	$B a=1.5$	$B a=2.0$
$\begin{aligned} & \mathrm{KH}_{3} \mathrm{C}_{4} \mathrm{O}_{8} \\ & 0.05 \mathrm{~m} \\ & \hline \end{aligned}$				-0,002	-0.004	-0.005		-0.028	-0.030	-0.032
$\begin{aligned} & \hline \text { KHtart } \\ & \text { sat } 25^{\circ} \mathrm{C} \end{aligned}$				0.000	0.013	$0: 024$		0.008	0.021	0.033
$\begin{array}{\|l} \hline \text { KHtart } \\ 0.01 \mathrm{~m} \\ \hline \end{array}$	0.008	0.012	0.016	0.012	0.016	0.020		0.012	0.016	0.020
$\begin{aligned} & \begin{array}{l} \mathrm{KH}_{2} \mathrm{cit} \\ 0.05 \mathrm{~m} \end{array} \end{aligned}$	-0.023	-0.006	0.008	-0.025	-0.008	0.007		-0.025	-0.007	0.008
$\begin{aligned} & \hline \text { KHpht } \\ & 0.05 \mathrm{~m} \\ & \hline \end{aligned}$	0.003	0.018	0.031	-0.009	0.007	0.021	-0.002	0.000	0.017	0.031
$\begin{aligned} & \mathrm{CH}_{3} \mathrm{COOH} \\ & 0.1 \mathrm{~m} \\ & + \\ & \mathrm{CH}_{3} \mathrm{COONa} \\ & 0.1 \mathrm{~m} \end{aligned}$	-0.020	-0.008	0.003	-0.021	-0.008	0.003	-0.001	-0.016	-0.003	0.009
$\begin{aligned} & \mathrm{CH}_{3} \mathrm{COOH} \\ & 0.01 \mathrm{~m} \\ & + \\ & \mathrm{CH}_{3} \mathrm{COONa} \\ & 0.01 \mathrm{~m} \\ & \hline \end{aligned}$	0.001	0.003	0.004	-0.009	-0.007	-0.005	0.000	-0.005	-0.003	-0.001
$\begin{aligned} & \hline \mathrm{KH}_{2} \mathrm{PO}_{4} \\ & 0.025 \mathrm{~m} \\ & + \\ & \mathrm{Na}_{2} \mathrm{HPO}_{4} \\ & 0.025 \mathrm{~m} \\ & \hline \end{aligned}$	-0.024	0.014	0.044	-0.035	0.004	0.036	0.000	-0.034	0.007	0.041
$\begin{aligned} & \hline \mathrm{KH}_{2} \mathrm{PO}_{4} \\ & 0.008695 \mathrm{~m} \\ & \mathrm{Na}_{2} \mathrm{HPPO}_{4} \\ & 0.03043 \mathrm{~m} \\ & \hline \end{aligned}$	-0.031	0.007	0.038	-0.039	0.000	0.032	0.000	-0.024	0.017	0.051
$\begin{aligned} & \mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7} \\ & \mathbf{0 . 0 1 \mathrm { m }} \end{aligned}$	-0.023	-0.020	-0.017	-0.008	-0.004	-0.001		-0.002	0.001	0.005
$\begin{aligned} & \hline \mathrm{NaHCO}_{3} \\ & 0.025 \mathrm{~m} \\ & + \\ & \mathrm{Na}_{2} \mathrm{CO}_{3} \\ & 0.025 \mathrm{~m} \end{aligned}$	-0.051	-0.013	0.017	-0.053	-0.014	0.018	$\begin{aligned} & -0.016 \\ & -0.008 \end{aligned}$	-0.042	-0.001	0.032

carbonic acid as redetermined by Peiper and Pitzer [23]. This shows that there is a good consistency of the pH reference values with the corresponding thermodynamic acid dissociation constants, when either the Bates-Guggenheim convention or the Pitzer equations are used for evaluation of the activity coefficients, provided that the ionic strength of these solutions is not higher than $0.1 \mathrm{~mol} \mathrm{~kg}^{-1}$.

The adoption of the Pitzer approach leads to the assignment of pH values to reference buffers in a wide range of ionic strengths. This assignment is based on a sound scientific model which takes into account specific interactions of ions. The presented methodology is universal; it overcomes the limitations of Bates-Guggenheim convention.
Unfortunately, data for other systems are insufficiently extensive to allow the calculation of the required Pitzer coefficients.

REFERENCES

1. A.K. Covington, R.G. Bates and R.A. Durst, Pure Appl. Chem. 57 (1985) 531.
2. R.G. Bates and E.A. Guggenheim, Pure Appl. Chem. 1 (1960) 163.
3. R.G. Bates, "Determination of pH. Theory and Practice", 3nd., Wiley, New York (1973).
4. H.S. Harned, R.W. Ehlers, J. Am. Chem. Soc. 55 (1933) 652.
5. R.G. Bates and V.E. Bower, J. Res. Natl. Bur. Std., 53 (1954) 283.
6. R.A. Durst, W.F. Koch and Y.C. Wu, Ion Selective Electrode Rev. 9 (1987) 173.
7. A.K. Covington and M.J. Rebelo, Anal. Chim. Acta, 200 (1987) 245.
8. M.J.G.H.M. Lito, M.F.G.F.C. Camões, M.I.A. Ferra and A.K. Covington, Anal. Chim. Acta, 239 (1990) 129.
9. K.S. Pitzer, "Activity Coefficients in Electrolyte Solutions", 2nd., CRC Press, Boca Raton, Florida (1991).
10. R.G. Bates and G. Pinching, J. Am. Chem. Soc. 71 (1949) 1274.
11. W.J. Hamer, G.D. Pinching and S.F. Acree, J. Res. Natl. Bur. Std., 35 (1945) 539.
12. W.J. Hamer and S.F. Acree, J. Res. Natl. Bur. Std., 35 (1945) 381.
13. R.G. Bates. J. Res. Natl. Bur. Std., 47 (1951) 127.
14. R.G. Bates and S.F. Acree, J. Res. Natl. Bur. Std., 30 (1943) 129.
15. H.S. Harned and R. Davis, J. Am. Chem. Soc. 65 (1943) 2030.
16. H.S. Harned and R.S. Scholes, J. Am. Chem. Soc. 63 (1941) 1706.
17. R.G. Bates, V.E. Bower, R.G. Milles and E.R. Smith, J. Res. Natl. Bur. Std. 47 (1951) 433.
18. R.G. Bates and R.G. Canham. J. Res. Natl. Bur. Std. 47 (1951) 343.
19. Handbook of Analytical Chemistry. Louis Meites, Mc Graw-Hill Book (1963).
20. S. Manohar and J. Ananthaswamy, Can. J. Chem. 69 (1991) 111.
21. A.K. Covington and M.I.A. Ferra, J. Solution Chemistry, 23 (1994) 1.
22. C-Y Chan, Y-Weng and K-Seu. J. Chem. Eng. Data 40 (1995), 685.
23. Peiper and K.S. Pitzer, J. Chem. Thermodynamics, 14 (1982) 613.
24. R.A.Robinson and R.H.Stokes, "Electrolyte Solutions", 2nd.,Butterwords, London (1970).

[^0]: Republication or reproduction of this report or its storage and/or dissemination by electronic means is permitted without the need for formal IUPAC permission on condition that an acknowledgement, with full reference to the source along with use of the copyright symbol © , the name IUPAC and the year of publication are prominently visible. Publication of a translation into another language is subject to the additional condition of prior approval from the relevant IUPAC National Adhering Organization.

