Pure Appl. Chem., Vol. 75, No. 1, pp. 71–102, 2003. © 2003 IUPAC

INTERNATIONAL UNION OF PURE AND APPLIED CHEMISTRY

ANALYTICAL CHEMISTRY DIVISION COMMISSION ON EQUILIBRIUM DATA*

CRITICAL EVALUATION OF STABILITY CONSTANTS AND THERMODYNAMIC FUNCTIONS OF METAL COMPLEXES OF CROWN ETHERS

(IUPAC Technical Report)

Prepared for publication by FRANÇOISE ARNAUD-NEU¹, RITA DELGADO^{2,3,‡}, AND SÍLVIA CHAVES^{3,4}

¹Laboratoire de Chimie-Physique, UMR 7512 (CNRS-ULP), ECPM, 25, rue Becquerel, 67087 Strasbourg Cedex 02, France; ²Instituto de Tecnologia Química e Biológica, UNL, Apartado 127, 2781-901 Oeiras, Portugal; ³Instituto Superior Técnico, Av. Rovisco Pais, 1049-001 Lisboa, Portugal; ⁴Centro de Química Estrutural, Av. Rovisco Pais, 1049-001 Lisboa, Portugal

*Membership of the Commission during the preparation of this report (1997–2001) was as follows:

Chairman: T. Kiss (Hungary, 1994–1997); H. K. J. Powell (New Zealand, 1998–1999); R. H. Byrne (USA, 2000–2001); *Secretary*: H. K. J. Powell (New Zealand, 1994–1997); R. H. Byrne (USA, 1998–1999); K. I. Popov (Russia, 2000–2001); *Titular Members*: R. H. Byrne (USA, 1991–1997); S. Ishiguro (Japan, 1996–1998); L. H. J. Lajunen (Finland, 1991–1998); K. I. Popov (Russia, 1998–1999); R. Ramette (USA, 1996–1998); S. Sjöberg (Sweden, 1994–2001); F. Arnaud-Neu (France, 2000–2001); M. Tabata (Japan, 2000–2001); P. May (Australia, 2000–2001); *Associate Members*: F. Arnaud-Neu (France, 1997–1999); R. Delgado (Portugal, 1996–2001); J. Felcman (Brazil, 2000–2001); T. P. Gajda (Hungary, 1998–2001); L. H. J. Lajunen (Finland, 2000–2001); H. Wanner (Switzerland, 2000–2001); M. Zhang (2000–2001); *National Representatives*: R. Apak (Turkey, 1996–1997); J. Felcman (Brazil, 1996–1999); K. R. Kim (Rep. of Korea, 1996–2001); D. V. S. Jain (India, 1996–2001); H. Wanner (Switzerland, 1998–2001).

[‡]Corresponding author

Republication or reproduction of this report or its storage and/or dissemination by electronic means is permitted without the need for formal IUPAC permission on condition that an acknowledgment, with full reference to the source, along with use of the copyright symbol ©, the name IUPAC, and the year of publication, are prominently visible. Publication of a translation into another language is subject to the additional condition of prior approval from the relevant IUPAC National Adhering Organization.

Critical evaluation of stability constants and thermodynamic functions of metal complexes of crown ethers

(IUPAC Technical Report)

Abstract: Stability constants and thermodynamic functions of metal complexes of crown ethers in various solvents published between 1971 and the beginning of 2000 have been critically evaluated. The most studied crown ethers have been selected: 1,4,7,10-tetraoxacyclododecane (12C4), 1,4,7,10,13-pentaoxacyclopentadecane (15C5), and 1,4,7,10,13,16-hexaoxacyclooctadecane (18C6). The metal ions chosen are: alkali and alkaline earth metal ions, Ag⁺, Tl⁺, Cd²⁺, and Pb²⁺. The solvents considered are: water, methanol, ethanol, and their mixtures, as well as acetonitrile, N,N'-dimethylformamide, dimethylsulfoxide, and propylene carbonate. The published data have been examined and grouped into two categories, "accepted" and "rejected". The "accepted" values were considered as: (i) recommended (**R**), when the standard deviations (s.d.) on the constant K or on $\Delta_r H$ were ≤ 0.05 lg unit or ≤ 1 kJ mol⁻¹, respectively; (ii) provisional (**P**), when 0.05 <s.d. ≤ 0.2 for lg K or 1 < s.d. ≤ 2 kJ mol⁻¹ for $\Delta_r H$; (iii) recommended 1 (**R1**), if the values were obtained by a single research group, but were considered reliable in comparison with related systems, and considering that the research team usually presents R-level values for other similar systems.

1. INTRODUCTION

Crown ethers are compounds with multiple oxygen heteroatoms (3 or more) incorporated in a monocyclic carbon backbone. They were first synthesized by Pedersen in 1967 [67P]. Their generic name originates from their molecular shape, reminiscent of a royal crown. Abbreviated names have been proposed for these compounds in which there is a first figure corresponding to the total number of atoms in the cyclic backbone followed by the letter C (for crown) and then the number of oxygen atoms.

Owing to the nature of their binding sites and to the presence of a hydrophilic cavity delineated by a lipophilic envelope, crown ethers exhibit a strong affinity and high selectivity for alkali and alkaline earth metal ions. They were the first synthetic ligands for which this pronounced selectivity was identified. Crown ethers were extensively studied in parallel with natural ion-selective cyclic antibiotics such as valinomycin or enniatin for which they serve as simple models, helping to explain the transport of these biologically relevant cations and the mechanism of neurotransmission [79LI, 79PL, 87LF, 87PL, 91DV].

Crown ethers have found applications in many areas based on their ability to selectively recognize metal and ammonium ions. In analytical chemistry, their selective metal ion binding properties are exploited in separation and transport processes for the recovery or the removal of cations, in their concentration from very dilute solutions (trace enrichment of radionuclides) and in the design of ion-selective electrodes. They have also been used bonded to the stationary phase in chromatographic techniques. Owing to their ability to dissolve salts in organic media, by reducing the cation/anion interaction (i.e., by shielding the cation and activating the anion), they have been used in many syntheses, and as catalysts in phase-transfer catalysis or enzyme mimics. They also have medical applications as diagnostic or therapeutic agents [79LI, 79PL, 87PL, 89L, 94G].

Since 1967 there has been a growing interest in crown ethers and their complexes; Pedersen's pioneering work, followed by that of Lehn [91DV, 95L] and Cram [97CC], opened up the field of supramolecular chemistry [91V, 95L, 99BG, 00SA]. A great number of crown ether derivatives were thus synthesized, as well as other "coronands" having various other heteroatoms, such as N and S. Their metal complexes, including lanthanides and transition and heavy metal ions, have been extensively studied both in the solid state and in solution. Four reviews of the stability constants of the complexes formed in solution cover the literature until 1993 and span over 500 original references for the simple crown ethers and their benzo and cyclohexyl derivatives [74CE, 85IB, 91IP, 95IP]. Owing to this huge amount of data, the scope of this paper is limited to the most common crown ethers: 1,4,7,10-tetraoxacyclododecane (12C4), 1,4,7,10,13-pentaoxacyclopentadecane (15C5), and 1,4,7,10,13,16-hexaoxacyclooctadecane (18C6). The list of cations is also restricted to alkali and alkaline earth metal ions and to some heavy metal ions such as Ag⁺, Tl⁺, Cd²⁺, and Pb²⁺. Although they are not considered as hard cations, the latter are to some extent analogous to the former ones since they possess a spherical symmetry and do not require a specific coordination geometry for complexation. Furthermore, they are often used as competing cations in potentiometric determinations of stability constants of alkali and alkaline earth metal ion complexes. The solvents covered in this review have been limited to those frequently used in equilibrium studies: water, methanol (MeOH), ethanol (EtOH) and their mixtures, acetone (AC), acetonitrile (AN), N,N'-dimethylformamide (DMF), dimethylsulfoxide (DMSO) and propylene carbonate (PC). A few data were collected for chloroform (CHCl₂), especially in the deuterated form used in NMR experiments, but they were too few to permit recommendations.

2. BINDING PROPERTIES OF CROWN ETHERS

In this section, the main conclusions from the many publications on metal ion complexation by crown ethers are briefly summarized. For more detail, readers are directed to the many review articles and books on the subject [e.g., 79M, 89L, 92CS, 96BI].

Thermodynamic origin of the complex stability

The fundamental equations

 $\Delta_{\rm r}G^{\circ} = -RT \ln K \text{ and } \Delta_{\rm r}G^{\circ} = \Delta_{\rm r}H^{\circ} - T\Delta_{\rm r}S^{\circ}$

show that both enthalpy and entropy contribute to the stability of the complexes. The enthalpy contribution can be obtained experimentally by titration calorimetry or from the temperature dependence of the stability constants (van 't Hoff plots), although the latter tends to be less reliable, especially if $\Delta_r H^\circ$ is not satisfactorily constant over the temperature range investigated, or the temperature range investigated is not sufficient. Complexation enthalpy changes are mainly related to: (i) cation/ligand interactions; (ii) solvation of the metal ion, the ligand, and the metal complexes formed in solution; (iii) repulsion between neighboring donor atoms; and (iv) steric deformation of the ligand. Entropy changes are linked to: (i) change in the number of particles involved in the complexation process and (ii) conformational changes of the ligand accompanying the complexation. In general, there is an enthalpy-driven stabilization, but in some cases—as for highly solvated cations for which complete or partial desolvation is an important step of the complexation process—the stabilization may be entropy-driven. There is often an entropy–enthalpy compensation effect, typical of class A metal ions, in which an enthalpy gain is accompanied by an entropy loss, or vice versa.

Factors contributing to complexation and selectivity of crown ethers

Crown ethers have a strong affinity for alkali and alkaline earth metal ions and mimic the behavior of natural antibiotics. The main factor governing the binding strength and selectivity is the *size adequacy*

between the cation and the cavity created by the ligand. The cations fitting the cavity best are located in its center and optimize the interactions with the oxygen heteroatoms. Table 1 gives the ionic radii of the cations selected in this paper and the cavity radius of 12C4, 15C5, and 18C6 estimated from CPK molecular models (Corey–Pauling–Koltun models) and, when available, from X-ray crystallographic data [80LI]^{*}. Accordingly, the highest selectivities are expected when radius ratios are closest to 1.0. However, as can be seen from Tables 6 to 15, deviations are observed (e.g., for the complex of Na⁺ with 15C5 in different solvents). It has been observed in practice that the size effect is most important for small cations that are able to enter the cavity completely, but other factors must be considered for the larger cations [80LI].

Cations	Ionic radius/pm	Cations	Ionic radius/pm	Cations	Ionic radius/pm
Li ⁺	74	Mg ²⁺	72	Ag ⁺	115
Na ⁺	102	Ca ²⁺	100	TĨ ⁺	150
K ⁺	138	Sr ²⁺	116	Pb ²⁺	120
Rb ⁺	149	Ba ²⁺	136	Cd ²⁺	109
Cs ⁺	170				
		Ligand	cavity radius/pm		
	12C4	1	5C5	18C6	
	60		85	130	

 $(86-92)^{a}$

Table 1 Size parameters of the cations [69SP, 76IT, 80LI] and the ligands [67P, 80LI].

^aFrom X-ray crystallographic data [80LI].

The size adequacy concept must be tuned by the *flexibility* of the ligand, which, at some expense of energy, allows for the accommodation of smaller or greater cations. Nevertheless, ligands such as 12C4 or 15C5 have cavities too small to accommodate some cations (e.g., Rb^+ or Cs^+). In these cases, the complexation takes place outside the circular bidimensional cavity and the cation completes its coordination sphere with a second ligand, leading to a "sandwich complex". On the other hand, very large ligands (e.g., 30C10) are able to wrap around a small cation like Na⁺ completely, so as to optimize the metal ion interactions with the donor sites. Thus, selectivity profiles of rigid ligands present *peak selectivities*, whereas more flexible ligands lead to *plateau selectivities* with a general decrease of the extent of complexation [79LI].

The metal-ligand binding energy also depends on the *number of oxygen heteroatoms* present in the macrocyclic structure. This factor determines not only the size of the cavity but also the bond energies with the cation. *Conformational changes* of the ligand as well as *the size of the rings* formed upon complexation may be additional factors that should also be taken into account.

The *nature of the cations* always plays an important role. With alkali and alkaline earth metal ions, which are "hard" acids in the Pearson classification [63P], the bonding with the oxygen heteroatoms is essentially electrostatic in nature and, therefore, the charge density of the cations is dominant. The post-transition series metal ions Ag^+ , Pb^{2+} , and Tl^+ are potentially softer and should, in principle, lead to less stable complexes with oxygen donor sites. However, their high polarizability and the covalent character of the bonds that they can establish may lead in some cases to highly stable complexes.

Another very important factor, which needs to be considered in more detail, is *solvation* of the species involved in the complexation, i.e., the ligand, the metal ion, and the complex(es). In sufficiently polar solvents, where the interactions with the counterions are negligible, stability of the complex(es) is

 $(134 - 143)^{a}$

^{*}CPK models give cavity sizes most consistent with the X-ray determinations.

related to the standard Gibbs free energies of solvation of the different species through the following equation:

$$-RT \ln K = \Delta_{\text{bind}} G^{\circ} + \Delta_{\text{solv}} G^{\circ}(\text{ML}^{n+}) - \Delta_{\text{solv}} G^{\circ}(\text{M}^{n+}) - \Delta_{\text{solv}} G^{\circ}(\text{L}) - \Delta_{\text{conf}} G^{\circ}(\text{L})$$

where the terms on the right are, respectively, the free energy for metal-ligand bonding, for solvation of the metal-ligand complex, for metal ion solvation, for ligand solvation, and for ligand conformational changes [77SZ].

Solvent effects are included in Cram's principle of preorganization [91C], which states that both host and guest participate in solvent interactions. However, some simplification can be achieved by assuming no change in conformation between the free and the complexed forms of the ligand. In this case, the solvation energy of the cation becomes the dominant factor in the above equation. In essence, the cation/ligand interactions compete against the solvation of the cation, and the balance between these two effects will be the determining factor for both stability and selectivity. Solvation of the metal ion depends strongly on the ion size. It also depends on the nature of the solvent. Some important solvent parameters are the relative permittivity (dielectric constant) of the solvents ε_r , their dipole moments μ , and, in particular, the Gutmann donor numbers, DN, which are a measure of the electron-donating properties of a solvent [78G]. These are given in Table 2 for the solvents selected in this study.

The donor number is defined as the negative enthalpy value for the 1:1 adduct formation between a given electron-pair donor solvent and the standard Lewis acid SbCl₅, in dilute solution in the noncoordinating solvent 1,2-dichloroethane, for which a DN^{*} of zero is assigned. The units are kcal mol⁻¹ for historical reasons. DN reflects the ability of the solvent to solvate cations and other Lewis acids [79R, 99C]. Because solvents with hydroxyl groups, like alcohols and water, solvate SbCl₅, their DN values have to be estimated by indirect methods. DN values range from zero, for solvents like hexane or tetrachloromethane, to 61.0 for triethylamine. In general, it is observed that the smaller the value of DN, the more stable the crown ether complex. The acceptor numbers of the same solvents, AN, an empirical parameter like DN, are also given in Table 2. AN measures the power of a given solvent to accept electron pairs as a Lewis acid. AN is a dimensionless number derived by Gutmann and coworkers from the ³¹P–NMR chemical shifts produced by the electron-pair acceptance effects of Lewis acidic solvents on dissolved triethylphosphane oxide. AN is defined as 100 times the ratio between the ³¹P–NMR chemical shift in a given electron-pair accepting solvent relative to the same in hexane, as reference solvent (AN equal to zero), and the shift of the 1:1 adduct Et₃PO–SbCl₅, dissolved in 1,2-dichloroethane (AN equal to 100, in order to achieve consistency with the DN scale) [79R, 99C].

Solvents	\mathcal{E}_{r}	μ/D	DN	AN
H ₂ O	78.3	6.07	18–33 ^a	54.8
Ме́ОН	32.66	5.7	19	41.3
EtOH	24.55	5.8	31.5	37.1
AC	20.56	9.5	17	12.5
AN	35.94	13.06	14.1	19.3
DMF	36.71	12.9	26.6	16.0
DMSO	46.45	13.0	29.8	19.3
PC	65.1	16.7	15.1	18.3

Table 2 Solvent parameters [78G].

^aDepends on how it is assessed, as water reacts with SbCl₅.

^{*}The symbols DN and AN do not comply with the normal IUPAC standards for symbols representing quantities (single letters in italic), and have to be considered as an exception of the same sort as pH. The application of the usual convention would be contrary to the universal usage and would also be difficult owing to the different nature of these empirical parameters (DN is a quantity, and AN is a dimensionless number).

However, the assumption of no conformational change of the ligand upon complexation is often invalid. Neither should ligand solvation be neglected, as shown by Popov et al. [88OP] and by Ozutsumi et al. [95OK, 95OKa], even though this factor is, in general, difficult to take into consideration because it requires a detailed knowledge of the ligand structures present in solution.

In solvents that are not easily dissociated, but where ion-pairing may occur, the *nature of the counterion* should become more important [96DN]. Such an effect should also increase with the charge of the cation. However, most authors consider that, analogous to H₂O, DMSO, and PC, ion pairing does not take place in solvents like MeOH, AN, and DMF for which $32 < \varepsilon_r < 40$, at least with diluted solutions (concentrations lower than 0.05 M) [95DL]. The situation should be different in AC and EtOH [80SP].

Crown ethers, like macrocycles in general, give rise to a macrocyclic effect that is characterized by an enhanced stability of their complexes as compared to the related open-chain systems. It is often governed by enthalpy changes although it appears as a balance of many antagonistic factors. Among the many factors contributing to this effect is the difference in solvation of the ligands [92CS].

3. PRESENTATION OF DATA AND ABBREVIATIONS USED

Only ML and ML₂ species, corresponding to the equilibria: $M^{n+} + L \rightleftharpoons ML^{n+}$ and $ML^{n+} + L \rightleftharpoons ML_2^{n+}$ (M^{n+} being the metal ion and L the crown ether) were reported in the publications reviewed. As mentioned previously, "sandwich complexes" tend to form when the size of the metal ion is larger than the cavity size of the macrocycle. They are, therefore, found with the small ligand 12C4 for all metal ions. In some solvents, they also form with the larger 18C6 and the very large Cs⁺.

All stability constants, *K*, are given (Tables 6–15) as concentration constants. This means that the activity coefficients were held constant during measurement and that the constants are valid only at the stated ionic strength. The symbols "*I*" and " $I \rightarrow 0$ " indicate ionic strength and its extrapolation to 0, respectively.

The experimental methods used for the determination of the selected values are denoted by the following symbols:

ISE	electromotive force (emf) measurement using ion-selective electrode
pot	emf measurement using metal electrode, usually Ag
pol	polarography
dpp	differential pulse polarography
cv	cyclic voltammetry
sp	spectrophotometry
fluor	fluorimetry
NMR	nuclear magnetic resonance spectroscopy
cal	calorimetry
microcal	microcalorimetry
cond	conductimetry
ix	ion exchange
comp	competition techniques with other metal or ligand

4. DATA EVALUATION CRITERIA

The published data of stability constants and thermodynamic functions of the complexes formed by the selected crown ethers and metal ions have been evaluated using the following main criteria [91KS; 91SM; 96YO; 97LP]:

- Unambiguous definition of complex stoichiometry for the stability constants reported (i.e., ML, ML₂, etc.).
- The extent to which essential reaction conditions are specified: the purity of the crown ether and other commercial salts, the grade of the solvent and its purification, the temperature, the ionic strength (see discussion below), the nature of the background electrolyte, the kinetics of the complexation reaction, the ligand-to-metal ratio, the ligand and metal ion concentrations, the type of counterion, etc. The method of standardization of the main solutions, especially the metal ion solutions, should also be indicated.
- The calibration of the apparatus used, when necessary, ought to be clearly described (e.g., the calibration of the electrode system in potentiometric measurements).
- The maintenance of constant temperature and ionic strength during titrations. If a background electrolyte is not used, the working concentrations need to be low (<0.1 M) and clearly indicated, and the experimental procedure must be sufficiently well described for it to be verified that the ionic strength has remained almost constant during the experiment.
- Reliable treatment of the experimental data (e.g., careful consideration of all possible species formed).
- Correct selection of auxiliary data from the literature, when necessary.
- Details of the calculation method used, indicating the name of the program (or a clear description of the unpublished methods if not published). A clear indication of the way standard deviations have been determined, the number of points measured, and the different metal-to-ligand ratios used is also important.

On the basis of these criteria, the published data have been examined and grouped into two categories: "accepted" and "rejected". Among the data that passed this preliminary screening, those exhibiting the best agreement between themselves were selected for further treatment: the values were averaged and calculated standard deviations (s.d.) evaluated, using a single value from each laboratory. The average value is considered as:

- **Recommended** (**R**) when the s.d. ≤ 0.05 for lg *K* or ≤ 1 kJ mol⁻¹ for $\Delta_r H$.
- **Provisional** (**P**) when $0.05 < \text{s.d.} \le 0.2$ for $\lg K$ or $1 < \text{s.d.} \le 2 \text{ kJ mol}^{-1}$ for $\Delta_r H$.
- **Recommended 1** (**R1**) if the values are presented by a single research group, but considered reliable in comparison with related systems, and considering that the research team usually presents R-level values for other similar systems.

The s.d. for the \mathbf{R} and \mathbf{P} values indicates, therefore, an agreement among the selected data and is given in the tables after each averaged value. For the $\mathbf{R1}$ values, the indicated s.d. is that given by the authors in the original paper, except in the case of inconsistency between the number of significant digits in the value and the s.d.

In a few cases, the criterion $0.2 < \text{s.d.} \le 0.3$ for lg *K* values was used to indicate values that the present reviewers assess as reliable, taking into account the difficult conditions necessary for the determinations, namely, slow kinetics of complexation, difficult synthesis of the crown ether, which makes replications impossible, competition methods, etc. Such data are not included in the tables, but are given as footnotes. The same treatment has been applied to data from some papers that do not exhibit any obvious errors, but reveal gaps in some important experimental details. Different experimental conditions that are considered reliable, namely, with respect to temperatures or pressure, are also given in footnotes.

The papers with rejected data may, nevertheless, contain important supplementary information that can be useful for readers. Accordingly, all the references checked in the present work have been listed (Tables 3–5), with the indication of the crown ether, the metal ion, and the solvent studied. Difficulties have been experienced in obtaining and translating most of the Chinese papers, and also some Russian and Japanese ones, so this review is limited to the papers referenced.

Table 3 References checked for each metal ion and each solvent with 1,4,7,10-tetraoxacyclododecane, 12C4.

Cations	Solvents References		
Li ⁺	H ₂ O	85E, 99E	
	Ме́ОН	80SP, 87B, 88E, 90E, 93IH, 95AS	
	AC	80SP	
	AN	80HN, 80SP, 95AS, 95DL, 96DN, 96KAa, 99KC	
	PC	80MD, 80SP, 89MG, 95DL, 96DN,	
Na ⁺	MeOH	81IK, 82MRa, 82MY, 83AA, 83GG, 87B, 87ZB, 93BC, 93IH, 95AS	
	AN	80HN, 96KA	
	AN:DMSO	96KAa	
	DMF	960K	
	DMSO	96KA	
	PC	80MD	
K ⁺	MeOH	811K, 82MRa, 82MY, 83AA, 83GG, 87B, 87ZB, 93BC, 95AS	
	AN	88Ba	
	DMF	960K	
	PC	80MD, 88Ba	
Rb ⁺	MeOH	87B. 87ZB	
	DMF	960K	
	PC	80MD	
Cs ⁺	MeOH	87B. 87ZB	
00	DMF	960K	
	PC	80MD	
Mg ²⁺	H ₂ O	85E 88E	
	PC	82MR	
Ca^{2+}	H ₂ O	85E 88E	
Cu	MeOH	87B	
	EtOH	88SV	
	PC	82MR	
Sr ²⁺	MeOH	87B	
51	PC	82MR	
Ba ²⁺	MeOH	86Bb 87B 87BB 92BC	
Du	AN	87BB	
	PC	82MR 87BB	
$\Delta \sigma^+$	MeOH	86Bb 87B 92BC 93BC	
116	AC	99BS	
	PC	89BP 99BS	
Ph ²⁺	НО	78KK 85LA2	
10	MeOH	86Bb	
	FtOH·H O	965Sb	
	$\Delta N \cdot H O$	96550	
	PC	82MD	
TI+	MeOH	86Bh	
11	FtOLI O	06200 0625h	
		03IH	
	AN	03IH	
		0655b	
	$n_2 0$	2030 22MD	
	PC.	02MD	

 Table 4 References checked for each metal ion and each solvent with 1,4,7,10,13-pentaoxacyclopentadecane, 15C5.

 O

Cations	Solvents	References			
Li ⁺	MeOH	80SP, 87ZB, 95AS, 99WK			
	MeOH:H ₂ O	87ZB			
	EtOH	99WK			
	AC	80SP, 94BC, 99WK			
	AN	80HN, 80SP, 88TK, 94DL, 95AS, 96KAa, 99KC, 99WK			
	DMF	99WK			
	DMSO	99WK			
	PC	80SP, 80TY, 89B, 94DL, 95DL, 99WK			
Na ⁺	H ₂ O	76IT, 79HR, 81LP, 82DG, 85BF, 86OE, 93SM			
	MeOH	80IY, 80LI, 81IK, 82DG, 82GD, 82IE, 82MK, 82MRa, 82MY,			
		83GG, 84DI, 84NM, 85Bb, 87AE, 87GH, 87NZ, 92KS, 92TU,			
		93BC, 95AS, 99WK			
	MeOH:H ₂ O	81SD, 82DG, 87KH, 87ZB			
	EtOH	81BL, 99WK			
	AC	94BC, 99WK			
	AN	80HN, 81LP, 82NY, 87BL, 88B, 88OP, 88TK, 95AS, 96KA, 99WK			
	AN:DMSO	96KA			
	DMF	81LP, 87BL, 99WB, 99WK			
	DMSO	81LP, 96KA, 99WK			
	PC	80TY, 89B, 99WK			
K ⁺	H ₂ O	76IT, 79HR, 86OE, 93SM			
	MeOH	80IY, 80LI, 80PT, 81IK, 82GD, 82IE, 82MK, 82MRa, 82MY, 83GG, 84DI, 84NM, 85Bb, 87NZ, 87ZB, 87ZV, 92KS, 93BC, 95AS, 99WK			
	MeOH:H ₂ O	83DD, 87ZB, 87KH			
	EtOH	81BL, 99WK			
	AC	94BC, 99WK			
	AN	80HN, 87BL, 88B, 88Ba, 88TK, 95AS, 99WK			
	DMF	87BL, 99WB, 99WK			
	DMSO	99WK			
	PC	80TY, 88B, 89B, 99WK			
Rb ⁺	H ₂ O	76IT			
	MeOH	85Bb, 87ZB, 88TK			
	MeOH:H ₂ O	87ZB			
	AC	94BC			
	AN	88B, 88TK, 91SK			
	DMF	96GM, 99WB			
- 1	PC	80TY, 89B			
Cs ⁺	H ₂ O	7611, 79HR, 93SM			
	MeOH	80LI, 84DI, 85Bb, 87NZ, 87ZB, 88TK, 99WK			
	MeOH:H ₂ O	87KH, 87ZB			
	EtOH	99WK			
	AC	94BC, 99WK			
	AN	88B, 88TK, 91SK, 99WK			

90SL, 96GM, 99WB, 99WK

(continues on next page)

© 2003 IUPAC, Pure and Applied Chemistry 75, 71-102

DMF

Cations	Solvents	References		
	DMSO	99WK		
	PC	80TY, 89B, 99WK		
Mg ²⁺	MeOH	87CB		
c	PC	92BS, 92ST		
Ca ²⁺	H ₂ O	86ZK, 90RS		
	MeOH	80LI, 83GG, 84DI, 85Bb, 87CB		
	EtOH	88SV		
	AC	93BD		
	PC	92BS		
Sr ²⁺	H ₂ O	76IT		
	Ме́ОН	80LI, 85Bb		
	AC	93BD		
	DMF	99WB		
	PC	92BS		
Ba ²⁺	H ₂ O	76IT, 00VG		
	MeOH	85Bb		
	AC	93BD		
	AN	88B		
	DMF	99WB		
	PC	92BS		
Ag ⁺	H ₂ O	76IT		
	MeOH	80LI, 85Bb, 85Bc, 93BC		
	EtOH	98PS		
	AC	99BS		
	AN:H ₂ O	98MT		
	DMF	99WB		
2.	PC	83AAa, 89BP, 92ST, 99BS, 00OK		
Pb ²⁺	H ₂ O	78KK, 76IT, 85BF		
	MeOH	85B, 86IC, 87CB		
	EtOH: H ₂ O	96SSb		
	AN:H ₂ O	96SS		
	PC	82MD		
Tl ⁺	H ₂ O	76IT, 85KT		
	MeOH	86IC, 93PS		
	EtOH:H ₂ O	96SSb		
	AN:H ₂ O	96SSb, 98MT		
	DMF	88OP		
	DMF:AN	00FM		
	PC	82MD		

 Table 4 (Continued).

Table 5 References checked for each metal ion and each solvent with 1,4,7,10,13,16-hexaoxacyclo-octadecane,18C6.

Cations	Solvents	Peferences		
	Solvents	Kererences		
Li ⁺	H ₂ O	80SP, 95KT, 96BC		
	MeOH	80SP		
	AC	80SP, 94BC		
	AN	80HN, 80SP, 96KA, 99KC		
	CDCl ₃	80BS		
	DMF	99WB		
	DMSO	77SZ, 80SP		
	PC	80SP, 89B, 90S		
Na ⁺	H ₂ O	71F, 76IT, 79HR, 81LP, 81RP, 82DG, 83PK, 84S, 85BF, 85ZP, 86OE, 86S, 89BB, 91E, 91MY, 92OI, 93GB, 93GE, 93SM, 95MV, 96BC, 96EY, 97DT, 97LK, 98KB, 99TM		
	МеОН	71F, 77BC, 77CS, 77IL, 77SZ, 79SP, 80IY, 80LI, 80WJ, 82DG, 82HL, 82MRa, 83GG, 83LS, 83PK, 84NM, 85Bb, 85SP, 85ZB, 86AG, 87AE, 87B, 87GH, 89BB, 89E, 90LP, 91LL, 92B, 92KS, 93LT, 96LK, 97LK, 97YY, 98KB, 98SS		
	MeOH:H ₂ O	76ITa, 80LV, 82DG, 82HL, 84EK, 89BB, 90MB, 91GT, 92SB, 93LT, 95KZ, 96LK, 97LK, 98KB		
	EtOH	81BL, 83PK		
	EtOH:H ₂ O	84LA		
	AC	81LP, 81RP, 86BP, 94BC		
	AN	80KC, 81LP, 81RP, 82NY, 85BP, 86BP, 87BL, 88B, 88OP, 95OKa		
	AN:H ₂ O	96EY		
	CDCl ₃	80BS		
	DMF	77SZ, 81LP, 81RP, 81T, 85BP, 87BL, 94OO, 99WB		
	DMSO	77SZ, 80KC, 81LP, 81RP		
	PC	80KC, 80TY, 81LP, 81RP, 84FL, 85SP, 86BP, 89B, 90S, 95OKa		
K ⁺	H ₂ O	71F, 76IT, 79HR, 82MRa, 83PK, 84S, 84ZB, 85GL, 85TA, 86S, 87MG, 87ZB, 89BB, 91E, 92OI, 92VO, 93SM, 95KT, 95WI, 96BC, 96EY, 96KS, 96SSa, 98BJ, 98KB		
	МеОН	71F, 77BC, 77CS, 77IL, 77SZ, 80IY, 80LI, 80PT, 80WJ, 82HL, 82MRa, 83GG, 83LS, 83PK, 83T, 84NM, 85Bb, 85BP, 85TJ, 86AG, 86B, 87AE, 87B, 87GH, 89BB, 89E, 90LP, 91LL, 92B, 92KS, 93LT, 96KS, 96SSa, 97RE, 97YY, 98KB, 98SS, 99RM		
	MeOH:H ₂ O	76ITa, 80LV, 82HL, 84EK, 89BB, 90MB, 91GT, 92SB, 93LT, 95KZ, 96KS, 98KB		
	MeOH:AN	97RE		
	MeOH:DMF	99RM		
	EtOH	81BL, 83PK		
	EtOH:H ₂ O	84LA		
	AC	86BP, 94BC, 96SSa		
	AN	80KC, 83T, 85TJ, 86BP, 87BL, 88B, 95OKa, 96SSa, 97RE		
	AN:DMF	97RE		
	AN:H ₂ O	96EY		
	$CDCl_3$	80BS		

(continues on next page)

Table	5	(Continued).
-------	---	--------------

Cations	Solvents References		
	DMF	77SZ, 81T, 87BL, 94OO, 96SSa, 97RE, 99RM, 99WB	
	DMSO	77SZ, 80KC, 83T, 88FK, 96SSa	
	PC:DMF	97RE	
	PC	80KC, 80TY, 86BP, 88Ba, 95OKa, 97RE	
Rb ⁺	H ₂ O	76IT, 89BB, 92OI, 95MV, 96BC	
	Ме́ОН	77BC, 77CS, 77SZ, 80LI, 83LS, 84ZB, 85Bb, 85ZB, 86B, 87B, 89BB, 91LL, 92B	
	MeOH:H ₂ O	76ITa, 89BB, 92GS, 92SB, 95KZ	
	EtOH:H ₂ O	84LA	
	AC	86BP, 94BC	
	AN	88B, 91SK, 95OKa	
	CDCl ₂	80BS	
	DMF	77SZ, 81T, 94OO, 96GM, 99WB	
	DMSO	77SZ	
	PC	80TY, 86BP, 89B, 95OKa	
Cs ⁺	H ₂ O	71F, 76IT, 79HR, 81RP, 89GS, 92OI, 93SM, 95MV, 96BC	
	MeOH	71F, 77BC, 77CS, 77SZ, 80LI, 83LS, 85Bb, 87B, 89BB, 91LL, 92B	
	MeOH:H ₂ O	76ITa, 89BB, 92SB, 95KZ	
	AC	77MP. 81RP. 86BP. 94BC	
	AN	77MP. 81RP. 85BP. 86BP. 88B. 91SK. 95OKa	
	DMF	77MP 77SZ 81T 85BP 90SL 9400 96GM 99WB	
	DMSO	77MP 77SZ	
	PC	77MP, 80KC, 80TY, 86BP, 89B, 950Ka	
Ra ⁺	H ₂ O	85SK	
Mg ²⁺	H ₂ O	97BE	
	MeOH	87CB 89KS	
	MeOH H_O	9988	
	AN	91AS 91SS	
	AN·H ₂ O	97BE	
	DME	85BP 89KS 91AS 99WB	
	DMSO	89KS	
	PC	92BS 92ST	
Ca^{2+}	H ₂ O	76IT 79HR 86OF 87SK 90RS 94VBa 95MV 95OK 96BC	
Cu	MeOH	8011 83GG 85Bb 86Ba 87CB 89KS 92B	
	MeOH H.O	76ITa 99SS	
	FtOH	86SR 87RS	
	EtOH·H ₂ O	84I A	
	AC	93BD	
	AN	9145 9155	
	DME	85BP 89KS 91AS 95OK 99WB	
	DMSO	89KS	
	PC	07RS 07ST	
Sr ²⁺	H ₂ O	76IT, 84SL, 85GL, 85SK, 88HD, 89KM, 94VB, 94VBa, 95MV, 950K, 95WL 96BC, 99SS	
	MeOH	801 C 801 L 84BP 85Bb 86B 86B 86B 80KS 80VK 02B	
	МеОН•Н О	76IT2 00SS	
	FtOH	92MV	
	EtOH-U O	80KM	
		93BD	
		9145 9155	
	AN	71110, 7100	

(continues on next page)

Cations	Solvents	References
	DMF	85BP, 89KS, 91AS, 95OK, 99WB
	DMSO	89KS
	PC	92BS, 92ST
Ba ²⁺	H ₂ O	76IT, 82YM, 85GL, 85SK, 88HD, 90BW, 94VBa, 95MV, 95OK, 95WI, 96BC, 98BJ, 98SS, 99BS, 99SS
	MeOH	77IL, 80LI, 82HL, 84BR, 85Ba, 85Bb, 86B, 86Ba, 86Bb, 89KS, 92B
	MeOH:H ₂ O	76ITa, 82HL, 99SS
	AC	86BP, 93BD
	AN	86BP, 88B, 91AS, 91SS
	DMF	85BP, 89KS, 91AS, 95OK, 99WB
	DMSO	89KS
2.	PC	86BP, 92BS, 92ST
Cd^{2+}	H ₂ O	85LAa, 92ZQ, 99TM, 00KT
	MeOH	98RH
	MeOH:H ₂ O	97SA
	DMF	96RE
	PC:DMF	96RE
DI 2+	PC	96RE
Pb ²	H ₂ O	7611, 76KK, 82YM, 85BF, 85LAa, 87IB, 88HA, 91PS, 92ZQ, 95WI, 97SA
	MeOH	85B, 86Bb, 86IC, 87CB
	MeOH:H ₂ O	76ITa, 87IB, 97SA
	EtOH:H ₂ O	96SSb
	AN	96RE
	AN:DMSO	96RE
	AN:H ₂ O	91PS, 94RA, 96SS
	DMF	85BP, 96RE
	DMSO	96RE
	PC:DMF	96RE
<u>م</u> _+	PC	90KE 71E 7(IT 07SA 07VO 00LD 00DS
Ag	H ₂ U MaOU	77H a 20VC 20LL 25Dh 26Dh 00LD 02D 00LD
		771La, 80KC, 80L1, 83D0, 80D0, 90LP, 92D, 99LP
	EtOH	975A, 99LF
	EIOH EtOH·H O	98FS, 00DS 8/I A
	AC	$031H 00RS_{2} 00RS$
	AC AN	88CR 96RG 00RS
	DMF	86PA 93IH 99WB 00BS
	DMSO	7787_00BS
	PC	80KC 89BP 92ST 99BSa 00BS
Т1+	H ₂ O	76IT. 76KK, 81RP. 84P. 84ZB, 85KT, 91PS, 92ZO, 95WI
	MeOH	74CG, 80KC, 80WL 86Bb, 86IC, 88LFa, 90LP, 93LK, 93PS
	MeOH:H ₂ O	93LK
	EtOH	74CG, 93LK
	EtOH:H ₂ O	93LK, 96SSb
	AC	81RP, 85LA, 86BP, 92LL, 93JH
	AC:H ₂ O	92LL
	AN	81RP, 86BP, 91LK, 91SS, 92LL, 93JH, 96RE
	AN:DMF	00FM
	AN:DMSO	96RE

 Table 5 (Continued).

(continues on next page)

Cations	Solvents	References		
	AN:H ₂ O	91PS, 92LL, 96SSb		
	DMF	77SZ, 81RP, 85LA, 88LFa, 88OP, 91LK, 91SS, 93JH, 96RE		
	DMSO	81RP, 91LK, 92LL		
	DMSO:H ₂ O	92LL		
	PC:DMF	96RE		
	PC	80KC, 91LK, 96RE		

 Table 5 (Continued).

Tables 6–15 collect all the selected values of lg K, $\Delta_r H$, and $T\Delta_r S$, each table corresponding to a different solvent, starting by water (Table 6), followed by methanol (Table 7) and its mixtures with water (Table 8), then ethanol (Table 9) and its mixtures with water (Table 10). The other tables follow the alphabetical order of the remaining solvents: acetone (Table 11), acetonitrile (Table 12), N,N'-dimethylformamide (Table 13), dimethylsulfoxide (Table 14), and, finally, propylene carbonate (Table 15).

Table 6 Recommended and provisional data for 12C4, 15C5, and 18C6 complexes in water at 25 °C and ionic strength 0–0.1 M.

Cations	Species	lg <i>K</i> (Evaluation)	References	$-\Delta_{\rm r} H$ (Evaluation) kJ mol ⁻¹	$T\Delta_{\rm r}S$ kJ mol ⁻¹	References
			12C4			
Pb ²⁺	ML	2.00 ± 0.05 (R1)	78KK			
			15C5			
Na ⁺	ML	0.8 ± 0.2 (P)	76IT, 79HR, 82DG, 85BF	6.3 ± 0.2 (R1)	-1.7	76IT
K ⁺	ML	0.75 ± 0.08 (P)	76IT, 79HR	17.2 ± 0.4 (R1)	-12.9	76IT
Cs ⁺	ML	0.8 ± 0.2 (P)	76IT, 79HR	5.4 ± 0.8 (R1)	-0.8	76IT
Sr ²⁺	ML	а		3.8 ± 0.4 (R1)		76IT
Ba ²⁺	ML	1.69 ± 0.06 (P)	76IT, 00VG	4.6 ± 0.4 (R)	5.0	76IT, 00VG
Ag ⁺	ML	b		b		
Tl ⁺	ML	с		с		
Pb ²⁺	ML	2.0 ± 0.1 (P)	76IT, 78KK	13.6 ± 0.1 (R1)	-2.5	76IT
			18C6			
Na ⁺	ML	0.8 ± 0.2 (P)	76IT, 79HR, 85BF, 92OI, 95MV, 96EY, 99TM	11 ± 2 (P)	-6	76IT, 92OI, 95MV
K ⁺	ML	$2.05 \pm 0.04 (R)^{d,e}$	71F, 79HR, 82MRa, 85TA, 87MG, 87ZB, 92OI, 92VO, 95WI, 96SSa	$25.0 \pm 0.9 \ (R)^{e,f}$	-13.3	76IT, 82MRa, 85TA, 92OI, 92VO, 95WI, 96SSa
Rb ⁺	ML	$1.51 \pm 0.08 \ (P)^{g}$	76IT, 920I, 95MV	$16.0 \pm 0.5 \ (R)^{g}$	-7.4	76IT, 95MV
Cs ⁺	ML	0.96 ± 0.03 (R)	76IT, 79HR, 92OI, 95MV	$17 \pm 1 \ (P)^{h}$	12	76IT, 920I, 95MV
Ca ²⁺	ML	0.5 ± 0.1 (P)	87SK, 95MV, 95OK			
Sr ²⁺	ML	$2.75 \pm 0.05 \ (R)^{i,,j}$	76IT, 95MV, 95OK, 96BC, 99SS	$15.1 \pm 0.5 \ (R)^{i,j}$	0.6	76IT, 95MV, 95OK, 99SS
Ba ²⁺	ML	$3.79 \pm 0.05 \ (R)^{k,l}$	76IT, 90BW, 94VBa, 95OK, 96BC, 99BS	$31.7 \pm 0.8 \ (R)^{k,l}$	-10.1	76IT, 90BW, 94VBa, 95OK, 96BC, 99BS, 99SS
Ag ⁺	ML	1.50 ± 0.03 (R)	76IT, 97SA, 00BS	9±1 (R)	-1	76IT, 97SA, 99LP, 00BS
Tl+	ML	$2.2 \pm 0.1 \text{ (P)}^{\text{m}}$	76IT, 76KK, 84P, 84ZB	$20 \pm 2 \ (P)^{m}$	-7	76IT, 76KK, 84P
Pb ²⁺	ML	$4.24 \pm 0.02 \ (R)^n$	76IT, 88HA, 97SA	$22 \pm 2 (P)^n$	2	76IT, 97SA

(continues on next page)

Table 6 (Continued).

^a The value of $\lg K = 1.95 \pm 0.08$ can be treated as reliable [76IT].

^b The values of $\lg K / -\Delta_r H : 0.94 \pm 0.08 / 13.5 \pm 0.1$ could be treated as reliable [76IT].

^c Divergent values from [76IT] and [85KT]; the most reliable value seems to be 1.23 ± 0.04 [76IT]; the corresponding $-\Delta_r H$ value is 16.8 ± 0.2 .

^dValues of lg *K* at other temperatures [85TA]: $2.29 \pm 0.01 (10 \text{ °C})$; $2.25 \pm 0.01 (15 \text{ °C})$; $2.14 \pm 0.01 (20 \text{ °C})$; $1.94 \pm 0.01 (35 \text{ °C})$; $1.79 \pm 0.02 (45 \text{ °C})$.

^eValues of lg *K* / $-\Delta_r H$ at *p* = 1.52 MPa and different temperatures [95WI]: 1.74 ± 0.06 / 26.3 ± 0.6 (50 °C); 1.43 ± 0.08 / 27.9 ± 0.9 (75 °C); 1.14 ± 0.08 / 30 ± 1 (100 °C); 0.86 ± 0.09 / 33.5 ± 0.9 (125 °C).

^f Values of $-\Delta_r H$ at other temperatures [92VO]: 23.6 ± 0.4 (35 °C); 22.3 ± 0.2 (45 °C).

^g Values of $\lg K / -\Delta_r H$ at other temperatures [95MV]: $1.47 \pm 0.02 / 15.3 \pm 0.2$ (35 °C); $1.38 \pm 0.02 / 14.7 \pm 0.1$ (45 °C).

^hValues of $-\Delta_r H$ at other temperatures [95MV]: 15.0 ± 0.2 (35 °C); 13.95 ± 0.06 (45 °C).

ⁱValues of lg \dot{K} / $-\Delta_r H$ at other temperatures [95MV]: 2.64 ± 0.02 / 13.9 ± 0.1 (35 °C); 2.56 ± 0.02 / 13.1 ± 0.1 (45 °C).

^jValues of lg $K / -\Delta_r H$ at p = 1.52 MPa and different temperatures [95WI]: $2.51 \pm 0.01 / 15.9 \pm 0.2$ (50 °C); $2.32 \pm 0.01 / 17.2 \pm 0.3$ (75 °C); $2.14 \pm 0.01 / 18.9 \pm 0.4$ (100 °C); $1.96 \pm 0.02 / 21.2 \pm 0.4$ (125 °C).

^kValues of lg $K / -\Delta_r H$ at other temperatures [95MV]: $3.68 \pm 0.04 / 29.3 \pm 0.2$ (35 °C); $3.52 \pm 0.04 / 28.1 \pm 0.4$ (45 °C).

¹Values of lg $K / -\Delta_r H$ at p = 1.52 MPa and different temperatures [95WI]: $3.46 \pm 0.01 / 29.4 \pm 0.1$ (50 °C); $3.12 \pm 0.01 / 28.7 \pm 0.2$ (75 °C); $2.83 \pm 0.01 / 29.3 \pm 0.4$ (100 °C); $2.57 \pm 0.01 / 31.3 \pm 0.6$ (125 °C).

^mValues of lg $K / -\Delta_r H$ at p = 1.52 MPa and different temperatures [95WI]: $2.01 \pm 0.01 / 19.4 \pm 0.3$ (50 °C); $1.78 \pm 0.02 / 20.2 \pm 0.3$ (75 °C); $1.57 \pm 0.03 / 21.2 \pm 0.5$ (100 °C); $1.38 \pm 0.03 / 22.4 \pm 0.5$ (125 °C).

ⁿValues of lg $K / -\Delta_r H$ at p = 1.52 MPa and different temperatures [95WI]: $3.98 \pm 0.01 / 21.5 \pm 0.2$ (50 °C); $3.73 \pm 0.01 / 22.4 \pm 0.4$ (75 °C); $3.49 \pm 0.01 / 24.2 \pm 0.5$ (100 °C); $3.27 \pm 0.02 / 26.9 \pm 0.6$ (125 °C).

Table 7 Recommended and provisional	data for 12C4, 15C5,	and 18C6 complexes in	methanol (MeOH) at 25 °C
and ionic strength 0-0.1 M.			

Cations	Species	lg <i>K</i> (Evaluation)	References	$-\Delta_{\rm r} H$ (Evaluation) kJ mol ⁻¹	TΔ _r S kJ mol ⁻¹	References
			12C4			
Li ⁺	ML	а				
Na ⁺	ML	1.5 ± 0.2 (P)	82MRa, 82MY; 87B	11 ± 2 (P)	-2.2	82MRa, 87B
	ML_2	2.2 ± 0.1 (P)	82MRa, 82MY; 87B	30 ± 2 (P)	-18	82MRa, 87B
K ⁺	ML	1.60 ± 0.07 (P)	82MRa, 82MY, 87B, 87ZB, 93BC			
	ML_2	b				
Rb ⁺	ML	1.65 ± 0.05 (R1)	87ZB			
	ML_2	$0.87 \pm 0.05 \ (R1)$	87ZB			
Cs ⁺	ML	1.62 ± 0.05 (R1)	87ZB			
	ML_2	0.82 ± 0.05 (R1)	87ZB			
			15C5			
Li ⁺	ML	1.24 ± 0.05 (R)	87ZB, 95AS			
Na ⁺	ML	3.32 ± 0.12 (P)	82GD, 82MRa, 82MY, 84DI, 85Bb, 93BC, 95AS	22.5 ± 0.4 (R)	-3.6	82MRa, 84DI, 85Bb
	ML_2	2.5 ± 0.2 (P)	82MRa, 85Bb	$10 \pm 1 \; (R1)$	5	85Bb
K ⁺	ML	3.5 ± 0.2 (P)	82GD, 82MRa, 82MY, 84DI, 85Bb, 87ZB, 93BC	32.4 ± 0.4 (R)	-12.2	82MRa, 84DI, 85Bb
	ML_2	2.5 ± 0.2 (P)	84DI, 82MY, 85Bb, 87ZB, 93BC			
Rb ⁺	ML	2.80 ± 0.08 (P)	87ZB, 88TK			
	ML_2	2.23 ± 0.05 (R1)	87ZB			
Cs ⁺	ML	2.69 ± 0.08 (P)	84DI, 87ZB, 88TK	d		
	ML_2	с				
Ca ²⁺	ML	2.2 ± 0.2 (P)	80LI, 83GG, 85Bb, 87CB	8 ± 2 (P)	5	80LI, 85Bb
Ag ⁺	ML	3.62 ± 0.02 (R)	80LI, 85Bb	27.2 ± 0.3 (R)	-6.6	80LI, 85Bb
	ML_2	e				
Tl ⁺	ML	3.31 ± 0.02 (R1)	86IC	36.40 ± 0.02 (R1)	-17.52	86IC
					(con	tinues on next page)

Cations	Species	lg <i>K</i> (Evaluation)	References	$-\Delta_r H$ (Evaluation) kJ mol ⁻¹	$T\Delta_{\rm r}S$ kJ mol ⁻¹	References
Pb ²⁺	ML	3.6 ± 0.2 (P)	85B, 86IC, 87CB	27 ± 2 (P)	-6	85B, 86IC
-			18C6			
Na ⁺	ML	$4.35 \pm 0.04 (R)^{f}$	71F, 79SP, 80WJ, 82HL, 82MRa, 85Bb, 85SP, 85ZB, 92B, 98SS	35 ± 1 (R)	-10	82HL, 83LS, 85Bb, 97LK
K ⁺	ML	6.11 ± 0.05 (R) ^g	71F, 80LI, 82MRa, 83T, 86B, 92B, 97RE, 98SS	55.3 ± 0.7 (R)	-20.5	80LI, 90LP, 92B, 96SSa, 97RE
Rb ⁺	ML	5.4 ± 0.1 (P)	77BC, 80LI, 85ZB, 92B	50.0 ± 0.4 (R)	-19.2	80LI, 85Bb, 92B
Cs ⁺	ML	4.6 ± 0.2 (P)	71F, 80LI, 83LS, 87B, 91LL	47.2 ± 0.3 (R1)	-21.0	80LI
	ML_2	2.06 ± 0.05 (R1)	80LI	$13.9 \pm 0.6 (R1)$	-2.1	80LI
Ca ²⁺	ML	4.0 ± 0.2 (P)	80LI, 85Bb, 87CB, 89KS, 92B	11.3 ± 0.3 (R)	11.5	80LI, 85Bb
Sr ²⁺	ML			$36.6 \pm 0.6 (R)$		80LI, 85Bc
Ba ²⁺	ML	$7.2 \pm 0.1 (P)$	80LI, 85Ba, 86B, 89KS	47 ± 2 (P)	-6	80LI, 85Ba, 85Bb, 86B
Ag ⁺	ML	4.61 ± 0.04 (R)	80KC, 80LI, 85Bb, 90LP, 92B	39 ± 1 (R)	-13	80LI, 85Bb, 90LP
Tl ⁺ Pb ²⁺	ML ML	$5.27 \pm 0.05 \ (R)$	80KC, 86Bb, 86IC	$44 \pm 1_{h} (R)$	-14	86IC, 90LP

Table 7 (Continued).

^aThe value of 1.32 ± 0.01 can be treated as reliable [95AS].

^bValues of K_2 from [87B] and [93BC] seem too high; a good estimation could be 0.5 ± 0.3 .

^cDivergent values for ML_2 species; the value 1.82 [87ZB] is the most likely.

^dValue of 31.9 ± 0.1 can be treated as reliable [84DI].

^elg $K_2 = 3.07 \pm 0.05$ can be treated as reliable [85Bc].

^fStudy of the effect of the ionic strength in TBAH, 25 °C, all values of lg *K* with standard deviation of ± 0.02 [79SP]: 4.33 (0.005 M); 4.32 (0.01 M); 4.30 (0.03 M); 4.29 (0.05 M); 4.27 (0.08 M); 4.28 (0.10 M); 4.22 (0.20 M); 4.17 (0.30 M); 4.13 (0.40 M); 4.09 (0.50 M).

^gValues of lg *K* at other temperatures [97RE]: 6.39 ± 0.04 (15 °C); 5.76 ± 0.05 (35 °C); 5.44 ± 0.06 (45 °C).

^hValues of lg $K = 6.99 \pm 0.05$ and $-\Delta_r H = 45 \pm 1$ can be treated as reliable [86Bb].

Table 8 Recommended	d and provisional	l data for 15C5	and 18C6	complexes (ML)) in methanol/water
(MeOH/H ₂ O) mixtures	s, 25 °C and ioni	c strength 0-0.	1 M.		

Cations	MeOH %	lg <i>K</i> (Evaluation)	References	$-\Delta_{\rm r} H$ (Evaluation) kJ mol ⁻¹	$T\Delta_{\rm r}S$ kJ mol ⁻¹	References
			15C5			
Li ⁺	70 wt	1.02 ± 0.05 (R1)	87ZB			
Na ⁺	20 wt	1.49 ± 0.01 (R1)	82DG			
	40 wt	1.71 ± 0.01 (R1)	82DG			
	60 wt	2.21 ± 0.01 (R1)	82DG			
	70 wt	2.32 ± 0.05 (R1)	87ZB			
	80 wt	2.65 ± 0.01 (R1)	82DG			
	90 wt	2.96 ± 0.01 (R)	81SD, 87KH			
K ^{+ a,b}	70 wt	2.79 ± 0.05 (R1)	87ZB			
Cs ⁺	90 wt	2.10 ± 0.01 (R1)	87KH			
			18C6			
Na ⁺	70 wt	2.76 ± 0.02 (R1)	76ITa	20.5 ± 0.5 (R1)	-4.8	76ITa
	80 vol	3.05 ± 0.01 (R1)	95KZ	23.3 ± 0.5 (R1)	-5.9	95KZ
	90 wt	3.66 ± 0.02 (R1)	82HL	27.8 ± 0.3 (R1)	-6.9	82HL

(continues on next page)

Cations	MeOH %	lg <i>K</i> (Evaluation)	References	$-\Delta_{\rm r} H$ (Evaluation) kJ mol ⁻¹	$T\Delta_{\rm r}S$ kJ mol ⁻¹	References
	90 vol	350 ± 0.05 (R1)	80I V			
	90 voi	4.33 ± 0.02 (R1)	82HI	33.0 ± 0.2 (P1)	0.2	82HI
к+	70 wt	4.33 ± 0.02 (R1) 4.33 ± 0.05 (R1)	76ITa	30.3 ± 0.2 (R1)	-9.2	76IT2
K	70 wt	4.33 ± 0.03 (R1) 4.70 ± 0.02 (R1)	05K7	37.3 ± 0.3 (R1) 45.3 ± 0.2 (R1)	-14.0	95KZ
	00 vol	4.70 ± 0.02 (R1) 5.23 ± 0.04 (R1)	901 V	$+5.5 \pm 0.2$ (K1)	-10.5	JJIKL
	90 V01	5.23 ± 0.04 (K1) 6.05 ± 0.05 (B1)	80LV 82UI	55.2 ± 0.2 (P1)	20.8	82LII
Dh+	99 wt	0.05 ± 0.05 (K1)	02FIL	33.3 ± 0.3 (R1) 38.8 ± 0.3 (R1)	-20.8	020L 761Ta
KU	70 wt	2.00 ± 0.02 (D1)	05V7	36.6 ± 0.3 (R1)	12.0	7011a 05V7
C-+	80 VOI	3.99 ± 0.03 (R1)	93KZ	$30.0 \pm 0.4 (RI)$	-13.8	93KZ
Cs	70 wt	2.84 ± 0.01 (R1)	/011a	$33.9 \pm 0.1 (\text{KI})$	-17.7	/011a
a. a. 2⊥	80 VOI	3.40 ± 0.03 (R1)	95KZ	$2/.7 \pm 0.8$ (R1)	-8.3	95KZ
Mg ²	90 wt	2.70 ± 0.04 (R1)	99SS	4.7 ± 0.1 (R1)	10.7	99SS
Ca ²⁺	70 wt	2.46 ± 0.05 (R)	76ITa, 99SS	$17.4 \pm 0.5 (R)$	-3.4	76ITa, 99SS
	90 wt	2.97 ± 0.04 (R1)	99SS	8.8 ± 0.1 (R1)	8.1	99SS
Sr ²⁺	50 wt	4.02 ± 0.05 (R1)	99SS	24.4 ± 0.2 (R1)	-1.5	99SS
	70 wt	5.03 ± 0.03 (R)	76ITa, 99SS	$31.8 \pm 0.5 (R)$	-3.1	76ITa, 99SS
	90 wt	5.26 ± 0.05 (R1)	99SS	$34.0 \pm 0.1 (R1)$	-4.0	99SS
Ba ²⁺	50 wt	4.96 ± 0.05 (R1)	99SS	38.4 ± 0.2 (R1)	-10.2	99SS
	70 wt	d	99SS	44.7 ± 0.2 (R)		76ITa, 99SS
	90 wt	6.56 ± 0.09 (P)	82HL, 99SS	43.1 ± 0.5 (R)	-5.7	82HL, 99SS
	99 wt	e	,	e		,
Ag ⁺	50 wt	2.45 ± 0.04 (R1)	97SA	16 ± 1 (R1)	-2	97SA
8	70 wt	2.95 ± 0.05 (R1)	97SA	f		
	90 wt	3.85 ± 0.05 (R1)	97SA	g		
Ph ²⁺	50 wt	5.03 ± 0.03 (R1) 5.12 ± 0.03 (R1)	9754	h		
10	70 wt	5.12 ± 0.03 (R1) 6 50 \pm 0.02 (R1)	0754	37.0 ± 0.5 (B)	0.8	76IT2 078A
	70 wt	0.30 ± 0.02 (K1) 6.70 ± 0.02 (D1)	973A	$\frac{57.9 \pm 0.3}{h}$	-0.0	7011a, 773A
	90 WI	0.70 ± 0.03 (R1)	9/3A			

Table	8 (Continued).
-------	-----	-------------

^aA value of 3.00 ± 0.08 can be treated as reliable for 90 wt [87KH].

^bML₂ species have been postulated in 70 wt, $\lg K_2 = 2.0 \pm 0.05$ [87ZB] and in 90 wt, $\lg K_2 = 2.2 \pm 0.2$ [87KH].

^cThe value 3.5 ± 0.1 can be treated as reliable [76ITa].

^dThe value 5.98 ± 0.06 can be treated as reliable [99SS].

^eThe values of lg $K / -\Delta_r H$ of 7.03 ± 0.06 / 43.4 ± 0.6 can be treated as reliable [82HL].

^fThe value of $-\Delta_r H = 23 \pm 2$ can be treated as reliable [97SA].

^gThe value of $-\Delta_r H = 34 \pm 2$ can be treated as reliable [97SA].

^hThe values of $-\dot{\Delta}_r H = 30 \pm 2$ (50 wt) and -43 ± 2 (90 wt) can be treated as reliable [97SA].

Table 9	Provisional	data for	15C5 and	18C6 complexes	in ethanol	(EtOH) at 25	°C and ionic strength (0–0.1 M.
---------	-------------	----------	----------	----------------	------------	--------------	-------------------------	----------

Cations	Species	lg <i>K</i> (Evaluation)	References	$-\Delta_{\rm r} H$ (Evaluation) kJ mol ⁻¹	TΔ _r S kJ mol ⁻¹	References
			15C5			
Ag ⁺	ML	а				
			18C6			
Ag ⁺	ML	$3.5 \pm 0.1 \ (P)^{b}$	98PS, 00BS	30.5 ± 0.6 (R)	-10.5	98PS, 00BS

^aValues at different temperatures can be treated as reliable [98PS]: 3.23 ± 0.04 (10 °C), 3.12 ± 0.06 (25 °C), 2.89 ± 0.05 (40 °C), 2.70 ± 0.05 (55 °C). A value of $-\Delta_r H = 21.4 \pm 0.5$ has been obtained from the temperature dependence of lg *K*.

^bValues of lg K at other temperatures : $3.62 \pm 0.05 (10 \text{ °C})$, $3.06 \pm 0.07 (40 \text{ °C})$, and $2.88 \pm 0.08 (55 \text{ °C})$ can be treated as reliable [98PS].

Cations	EtOH %	lg <i>K</i> (Evaluation)	References	$-\Delta_{\rm r} H$ (Evaluation) kJ mol ⁻¹	$T\Delta_{\rm r}S$ kJ mol ⁻¹	References
			12C4			
Tl ⁺ Pb ²⁺	90 wt 90 wt	a 3.23 ± 0.04 (R1)	96SSb			

Table 10 Recommended data for 12C4, 15C5, and 18C6 complexes (ML) in ethanol/water mixtures, 25 °C and ionic strength 0-0.1 M.

^aA value of 2.18 ± 0.06 can be treated as reliable [96SSb].

Table 11 Recommended and provisional data for 12C4, 15C5, and 18C6 complexes in acetone (AC) at 25 °C and ionic strength 0-0.1 M.

Cations	Species	lg <i>K</i> (Evaluation)	References	$-\Delta_{\rm r} H$ (Evaluation) kJ mol ⁻¹	$T\Delta_{\rm r}S$ kJ mol ⁻¹	References
			12C4			
Li ⁺	ML	а		а		
Ag ⁺	ML ML ₂	$2.17 \pm 0.05_{b}$ (R1)	99BS			
			15C5			
Li ⁺	ML	3.42 ± 0.04 (R1)	94BC	12.9 ± 0.5 (R1)	6.6	94BC
Na ⁺	ML	с		27.3 ± 0.4 (R1)		94BC
K ⁺	ML	4.26 ± 0.05 (R1)	94BC	$26.9 \pm 0.5 (R1)$	-2.6	94BC
Rb ⁺	ML	4.34 ± 0.03 (R1)	94BC	24.3 ± 0.3 (R1)	0.5	94BC
Cs ⁺	ML	3.68 ± 0.04 (R1)	94BC	19.4 ± 0.4 (R1)	1.6	94BC
Ca ²⁺	ML	4.01 ± 0.05 (R1)	93BD	35 ± 1 (R1)	-12	93BD
Ag ⁺	ML	4.52 ± 0.02 (R1)	99BS	d		
			18C6			
Na ⁺	ML	4.46 ± 0.04 (R1)	94BC	34.0 ± 0.5 (R1)	-8.7	94BC
K ⁺	ML	5.89 ± 0.02 (R1)	94BC	50.6 ± 0.4 (R)	-17.0	94BC, 96SSa
Rb ⁺	ML	5.16 ± 0.03 (R1)	94BC	47.8 ± 0.6 (R1)	-18.5	94BC
Cs ⁺	ML	4.51 ± 0.04 (R1)	94BC	52.8 ± 0.4 (R1)	-27.2	94BC
Ca ²⁺	ML	5.07 ± 0.05 (R1)	93BD	39 ± 1 (R1)	-10	93BD
Sr ²⁺	ML	5.31 ± 0.05 (R1)	93BD	52 ± 1 (R1)	-22	93BD
Ba ²⁺	ML	7.35 ± 0.05 (R1)	93BD	61 ± 1 (R1)	-19	93BD
Ag ⁺	ML	5.1 ± 0.2 (P)	93JH, 99BSa	36 ± 2 (P)	-7	99BSa, 00BS

^aThe values of lg $K / -\Delta_r H$ at 27 °C 1.62 ± 0.03 / 13.4 ± 0.8 can be treated as R1 [80SP]. ^bA value of lg $K_2 = 2.98 \pm 0.06$ can be treated as reliable [99BS]. ^cA value of 4.26 ± 0.06 can be treated as reliable [94BC].

^dA value of 31 ± 2 can be treated as reliable [99BS].

Table 12 Recommended and provisional data for 12C4, 15C5, and 18C6 complexes in acetonitrile (AN) at 25 °C and ionic strength 0-0.1 M.

Cations	Species	lg <i>K</i> (Evaluation)	References	$-\Delta_{\rm r} H$ (Evaluation) kJ mol ⁻¹	$T\Delta_{\rm r}S$ kJ mol ⁻¹	References
			12C4			
Li ⁺	ML	3.4 ± 0.1 (P)	80HN, 95AS, 96DN, 99KC	21.9 ± 0.8 (R1)	-2.8	96DN

(continues on next page)

	(,-				
Cations	Species	lg <i>K</i> (Evaluation)	References	$-\Delta_{\rm r} H$ (Evaluation) kJ mol ⁻¹	$T\Delta_{\rm r}S$ kJ mol ⁻¹	References
Na ⁺	ML	3.31 ± 0.01 (R1)	80HN			
K ⁺	ML	2.40 ± 0.02 (R1)	88Ba	$9.5 \pm 1 (R1)$	4.2	88Ba
	ML_2	2.29 ± 0.05 (R1)	88Ba	$14.5 \pm 1 (R1)$	-1.4	88Ba
Ba ²⁺	ML	$4.12 \pm 0.05 (R1)$	87BB	$42.5 \pm 1 (R1)$	-19.0	87BB
Tl ⁺	ML	4.01 ± 0.02 (R1)	93JH			
			15C5			
Li ⁺	ML	$4.3 \pm 0.2 (P)^{a}$	94DL, 99WK			
Na ⁺	ML	5.1 ± 0.2 (P)	80HN, 82NY, 88B,	26 ± 2 (P)	3	82NY, 88B,
			88OP, 88TK			88OP
K ⁺	ML	4.2 ± 0.2 (P)	88B, 88TK	$32 \pm 1 (R1)$	-8	88B
Rb ⁺	ML	3.6 ± 0.2 (P)	88B, 88TK, 91SK	$29 \pm 1 (R1)$	-9	88B
Cs ⁺	ML	3.0 ± 0.1 (P)	88B, 88TK, 91SK	$28 \pm 1 (R1)$	-11	88B
			18C6			
Li ⁺	ML	b				
Na ⁺	ML	4.6 ± 0.1 (P)	80KC, 82NY, 88B, 880P	-2 ± 1 (R)	28	82NY, 88B, 950Ka
K ⁺	ML	5.76 ± 0.08 (P)	80KC, 83T, 88B, 97RE	с		
Rb ⁺	ML	5.1 ± 0.2 (P)	88B, 950Ka	$14 \pm 1 (P)$	15	88B, 950Ka
Cs ⁺	ML	d		$17 \pm 1 (P)$		88B, 950Ka

 Table 12 (Continued).

^aThe value of 4.96 ± 0.05 at 27 °C can be treated as reliable [96KAa].

^bThe value at 27 °C lg $K = 2.32 \pm 0.05$ (R) can be treated as reliable [80SP, 96KA].

^cThe value of $-\Delta_r H = 14 \pm 3$ can be treated as reliable [88B, 950Ka, 96SSa].

^dThe values of lg $K = 4.36 \pm 0.08$ at 25 °C [950Ka] and 4.8 ± 0.2 at 22 °C [85BP] can be treated as reliable.

0						
Cations	Species	lg <i>K</i> (Evaluation)	References	$-\Delta_{\rm r} H$ (Evaluation) kJ mol ⁻¹	$T\Delta_{\rm r}S$ kJ mol ⁻¹	References
			12C4 ^a			
			15C5			
Cs ⁺	ML	b				
			18C6			
Na ⁺	ML	$2.5 \pm 0.1 (P)^{c}$	81T, 94OO, 99WB	d		
K ⁺	ML	$4.2 \pm 0.1 (P)^{e}$	81T, 94OO, 96SSa, 97RE	38.1 ± 0.8 (R)	-14.1	94OO, 96SSa, 99RM, 99WB
Rb ⁺	ML	4.0 ± 0.1 (P)	81T, 94OO, 99WB	43 ± 2 (P)	-20	9400, 99WB
Cs ⁺	ML	3.64 ± 0.02 (R)	81T, 94OO, 99WB	49.2 ± 0.8 (R)	-28.4	94OO, 99WB
Ca ²⁺	ML			3 ± 1 (R)		950K, 99WB
Sr ²⁺	ML	$2.92 \pm 0.02 \ (R1)^{f}$	950K	22.6 ± 0.2 (R1)	-5.9	950K
Ba ²⁺	ML	$3.9 \pm 0.2 \ (P)^{g}$	95OK, 99WB	$44.4 \pm 0.1 (R1)$	-22.2	950K
Ag ⁺	ML	2.6 ± 0.2 (P)	93JH, 99WB, 00BS			
Tl+	ML	$3.6 \pm 0.1 (P)^{h}$	85LA, 88OP, 91SS, 93JH			

Table 13 Recommended and provisional data for 12C4, 15C5, and 18C6 complexes in DMF at 25 °C and ionic strength 0–0.1 M.

(continues on next page)

Cations	Species	lg <i>K</i> (Evaluation)	References	$-\Delta_{\rm r} H$ (Evaluation) kJ mol ⁻¹	TΔ _r S kJ mol ⁻¹	References
Pb ²⁺	ML	$3.7 \pm 0.1 \text{ (P)}^{i}$	85BP, 96RE			

 Table 13 (Continued).

^aValues of lg K_1 / lg K_2 for alkali metal ions can be treated as reliable [960K]: 0.43 ± 0.08 / 1.7 ± 0.1 (Na⁺), 0.68 ± 0.07 / 0.5 ± 0.3 (K⁺), 0.66 ± 0.05 / - (Rb⁺), 0.56 ± 0.06 / 0.6 ± 0.2 (Cs⁺).

^bValue of 0.91 ± 0.04 can be treated as reliable [90SL].

^cValue at 28 °C can be treated as reliable: 2.23 ± 0.04 [81RP].

^dThe value of $-\Delta_r H = 19 \pm 3$ can be treated as reliable [94OO, 99WB].

^eValues of lg K at other temperatures can be treated as reliable [97RE]: 4.59 ± 0.08 (15 °C), 4.03 ± 0.09 (35 °C), and 3.74 ± 0.08 (45 °C).

^f Value at 30 °C can be treated as reliable: $\lg K = 2.67 \pm 0.04$ [91AS].

^gValue at 30 °C can be treated as reliable: $\lg K = 3.81 \pm 0.03$ [91AS].

^hValue at 28 °C can be treated as reliable: $\lg K = 3.35 \pm 0.06$ [81RP].

ⁱValue at 22 °C.

Table 14 Recommended data for 15C5 and 18C6 complexes in DMSO at 25 °C and ionic strength 0–0.1 M.

Cations	Species	lg <i>K</i> (Evaluation)	References	$-\Delta_{\rm r} H$ (Evaluation) kJ mol ⁻¹	$T\Delta_{\rm r}S$ kJ mol ⁻¹	References
			15C5			
Na ⁺	ML	a				
			18C6			
Na ⁺	ML	$1.43 \pm 0.05 (R1)^{b}$	80KC			
K ⁺	ML	3.25 ± 0.04 (R)	80KC, 83T	$27.6 \pm 0.5 (R1)$	-9.1	96SSa
Cs ⁺	ML	3.04 ± 0.02 (R1)	77MP			
Ag ⁺	ML	1.56 ± 0.05 (R1)	00BS	1.0 ± 0.4 (R1)	7.9	00BS

 a The value at 27 $^\circ C$ can be treated as R1: 1.17 \pm 0.01 [96KA].

^bThe value of lg $K = 1.41 \pm 0.07$ (28 °C) can be treated as reliable [81RP].

Table 15 Recommended and provisional	data for 12C4, 1	15C5, and 18C6	complexes in propy	lene carbonate (PC)
at 25 °C and ionic strength 0–0.1 M.				

Cations	Species	lg <i>K</i> (Evaluation)	References	$-\Delta_r H$ (Evaluation) kJ mol ⁻¹	$T\Delta_{\rm r}S$ kJ mol ⁻¹	References
			12C4			
Li ⁺	ML	2.87 ± 0.06 (P)	80MD, 96DN	17 ± 1 (R1)	-0.6	96DN
Na ⁺	ML					
	ML_2	а				
K ⁺	ML	2.08 ± 0.06 (P)	80MD, 88Ba	с		
	ML_2	b				
Rb ⁺	ML	1.69 ± 0.04 (R1)	80MD			
Cs ⁺	ML	$1.43 \pm 0.05 (R1)$	80MD			
Mg ²⁺	ML	d				
	ML_2					
Ca ²⁺	ML					
	ML_2	e				
Sr ²⁺	ML	5.29 ± 0.05 (R1)	82MR			
	ML_2	f				
Ag ⁺	ML	3.9 ± 0.1 (P)	89BP, 99BS			

(continues on next page)

Cations	Species	lg <i>K</i> (Evaluation)	References	$-\Delta_{\rm r} H$ (Evaluation) kJ mol ⁻¹	$T\Delta_{\rm r}S$ kJ mol ⁻¹	References
	ML_2	3.5 ± 0.2 (P)	89BP, 99BS			
Tl ⁺	ML	g				
Pb ²⁺	ML	h				
	ML_2					
			15C5			
Li ⁺	ML	4.14 ± 0.09 (P)	80TY, 89B, 94DL	$21 \pm 1 (R)$	3	89B, 94DL
Na ⁺	ML	i		i		
K ⁺	ML	3.6 ± 0.2 (P)	80TY, 89B	k		89B
	ML_2	j				
Cs ⁺	ML	1		$17 \pm 1 (R1)$		89B
Ag ⁺	ML	$6.27 \pm 0.03 (R)$	89BP, 99BS	$41.2 \pm 0.9 (R1)$	-5.4	99BS
	ML_2	m				
Tl ⁺	ML	5.29 ± 0.02 (R1)	82MD			
	ML_2	1.45 ± 0.04 (R1)	82MD			
			18C6			
Li ⁺	ML	2.74 ± 0.05 (R)	89B, 90S	$17 \pm 1 (R1)$	-1	89B
Na ⁺	ML	5.5 ± 0.2 (P)	80KC, 80TY, 84FL, 90S, 950Ka	29 ± 1 (R)	2	89B, 950Ka
K ⁺	ML	$6.2 \pm 0.1 (P)^n$	80KC, 80TY, 88Ba, 90S, 950Ka, 97RE	$46.3 \pm 0.9 (R)$	-10.9	88Ba, 95OKa
Rb ⁺	ML	5.33 ± 0.07 (P)	80TY, 89B, 950Ka	$44 \pm 1 (R)$	-14	89B, 950Ka
Cs ⁺	ML	4.50 ± 0.02 (R)	80KC, 80TY, 89Ba, 950Ka	43.3 ± 0.4 (R)	-17.6	89B, 95OKa
Mg ²⁺	ML	2.94 ± 0.05 (R1)	92BS	$30 \pm 1 (R1)$	-14	92BS
Ca ²⁺	ML	3.75 ± 0.07 (P)	92BS, 92ST	$38.5 \pm 1 (R1)$	-17.1	92BS
Sr ²⁺	ML			$59 \pm 1 (R1)$		92BS
Ba ²⁺	ML	0		0		
Ag^+	ML	7.0 ± 0.1 (P)	80KC, 89BP, 99BSa	$49.6 \pm 0.8 (R1)$	-9.7	99BSa, 00BS
Tl+	ML	7.13 ± 0.05 (R1)	80KC			

Table	15	(Continued).
-------	----	--------------

^aThe values of $\lg K_1 / \lg K_2$ and of $3.5 \pm 0.2 / 2.8 \pm 0.2$ (pot) can be treated as reliable [80MD].

^bEvidence for a 1:2 complex with $\lg K_2 = 2.65 \pm 0.02$ [88Ba]. Values of $-\Delta_r H_1 = 14.6 \pm 2$ and $-\Delta_r H_2 = 8.7 \pm 2$ can be treated as reliable [88Ba].

^dlg $K_1 = 2.61 \pm 0.08$ and lg $K_2 = 3.6 \pm 0.2$ can be treated as reliable [82MR].

^elg $K_1 = 5.53 \pm 0.06$ and lg $K_2 = 4.0 \pm 0.1$ can be treated as reliable [82MR].

^fEvidence for a 1:2 complexes with $\lg K_2 = 2.6 \pm 0.1$ [82MR].

 g A value of 3.71 ± 0.06 can be treated as reliable [82MD].

^hValues of lg $K_1 = 7.68 \pm 0.09$ and lg $K_2 = 4.0 \pm 0.2$ can be treated as reliable [82MD].

ⁱThe values of $\lg K / -\Delta_r H$ of $4.87 \pm 0.05 / 32 \pm 2$ can be treated as reliable [89B].

^jValues of $\lg K_2 = 2.84 \pm 0.05$ and $-\Delta_r H_2 = 30 \pm 2$ can be treated as reliable [88Ba].

^kA value of 30 ± 2 can be treated as reliable [89B].

 $^{1}\!\mathrm{A}$ value of 3.39 $\pm\,0.05$ can be treated as reliable [89B].

^mlg $K_2 = 1.77 \pm 0.01$ has also been found [89BP].

ⁿValues of lg K at other temperatures [97RE]: 6.43 ± 0.07 (15 °C), 5.85 ± 0.05 (35 °C), and 5.55 ± 0.05 (45 °C).

^oThe values of lg $K = 11.6 \pm 0.1$ and $-\Delta_r H = 64 \pm 1$ can be treated as reliable [92BS].

Temperature/	<i>I</i> /M or <i>c</i> /M	Counterion	Experimental	Ref.
°C	(medium)		methods	
25	$2 \times 10^{-4} - 1 \times 10^{-2}$	Cl-	ISE	71F
25	0.1	Cl^- or ClO_4^-	cal	76IT
25	0.1	Cl^{-} or ClO_{4}^{-}	cal	76ITa
25	0.1/TEAP	-	pol	76KK
25	≤10 ⁻²	Cl⁻	ISE	77BC
25	≤0.1	TPB ⁻	¹³³ Cs NMR	77MP
25	0.1/TEAP	NO_2^-	pol	78KK
25	≤0.1	CE	ISE (cation exch.)	79HR
25	<0.1/TBAH	-	ISE	79SP
25	$1.9 - 3.3 \times 10^{-3}$	IT. TPBT	cond	80HN
25	≤0.1	ClO_{1}^{-} or NO_{2}^{-} or pic	ISE or Ag ⁺ elect.	80KC
25	0.1	Cl^{-} or ClO_{4}^{-} or NO_{4}^{-}	cal	80LI
25	0 1/TMAB	Cl^-	ISE	80LV
25	0.1/TEAP	$C10^{-}$	pot	80MD
27	<0.02	ClO_4^-	⁷ Li NMR	80SP
25	$\leq 5 \times 10^{-4}$	$C10_4$	cond	80TY
25	<0.1	-	fluor	80WI
25	<0.1	C10. ⁻	²⁰⁵ TI NMR	81RP
20	$4-5 \times 10^{-4}$	$C10_4$	cond	81T
25	$4-5 \times 10^{-2}$ 2 × 10 ⁻⁴ - 1 × 10 ⁻²	-	ISE	82DG
25	$2 \times 10^{-4} - 1 \times 10^{-2}$		ISE	82GD
25	2 ~ 10 = 1 ~ 10		col	820D 82HI
25	 0.1/TEAP	CF SO -	bot comp	82MD
25	$\sim 10^{-3}$	$C1_{3}^{-}50_{3}$	pot/cal	82MR
25	$\sim 10^{-4}$ 1 × 10 ⁻²		ISE	
25	$2 \times 10^{\circ} = 1 \times 10^{\circ}$	CI	ISE	02INI I 82NIV
10, 23, 40	2×10^{-4} 1×10^{-2}	- Cl ⁻	ISE	02IN I 82CC
25	$2 \times 10^{\circ} = 1 \times 10^{\circ}$	CI	ISE	821 6
25	≤0.1	- C1 ⁻	cond	83L3 82T
25	≤0.1			831 84DI
25	0.1 0.1/TEAD			84DI
25 25 25 45 55	0.1/TEAP	ClO_4	ISE 205th Nimp	84FL
25, 35, 45, 55, 65	0.02	CIO ₄	II NMR	84P
25	0.1/TMAH		nol	847B
25	<0.1/11/A11	- CIO -	cal comp	85Ba
25	 0.05/TEAP	NO = CIO =	pot (comp Ag+)	85Bb
23	$0.05 \text{ P} \times 10^{-3}$	NO_3 , CIO_4	pot (comp Ag+)	0500
25	$0.3 = 0 \times 10$	NO_3 ,		95DE
23	0.1/TEAF	СЮ ₄ трр-	132 133 Ca NMP or 23 Na NMP comp	0.5DD
22	≤0.01	ΓD	$133_{\text{Ca}} \approx 205_{\text{TL}} \text{ NMD}$	0JDF 951 A
25	≤0.02	CIO_4 , NO_3	2^{3} N ₂ NMD	85CD
23	≤ 0.1	SCN CI=		033P
10, 15, 20, 25,	$\leq 3 \times 10^{-2}$	CI	cond	851A
25	0 1/TEAI	CI-	pol	857B
25	<0.1		cal comp	86B
25	 0.05/TEAD	-	ISE	86Bb
23	<0.05/1EAF	-	col	0000
25	≥0.1 0.1	C10 = or NO =		86IC
25	0.1	NO = TDD = D = T	cai	00IC
23	≤0.1	NO_3 , IPB, Br, I	cona	8/B

 Table 16 Experimental conditions of papers selected for critical evaluation in Tables 6 to 15.

(continues on next page)

Temperature/	<i>I</i> /M or <i>c</i> /M	Counterion	Experimental	Ref.
°C	(medium)		methods	
			105	
25	0.05/TEAP of TEAN	C10 -	ISE	97DD
25	0.02-0.03	04	cai	87CP
23	0.1/TEALOLIDAF	-	por	87CB
25	≤ 0.1	CI ⁻	ISF	87KH
25	0.05	pic ⁻	ix	87MG
25	<0.03	$C^{-} NO^{-}$	cal	87SK
25	0 (extrapolation)	$Cl^- NO_3^-$	⁴³ Ca NMR	0/51
25	$5 \times 10^{-4} - 1 \times 10^{-3}$	CI ⁻	cond	877B
25	0.05/TEAP	0.	ISE	88B
20	≤0.1	TPB ⁻	cal comp	002
25	0.05/TEAP	C10,-	ISE	88Ba
20	$\leq 6 \times 10^{-3}$	0104	cal	0024
25	0.1/HNO ₂	_	pol	88HA
25	≤0.1	ClO ₄ ⁻	²³ Na or ²⁰⁵ Tl NMR	88OP
25	6×10^{-4}	ClO_4^-	cond	88TK
25	0.05/TEAP	4	ISE	89B
	$\leq 2.5 \times 10^{-3}$	ClO ₄ ⁻ , TPB ⁻	cal	
25	0.1/TEAP	ClO ₄	ISE	89BP
25	$<1 \times 10^{-4}$	Cl	sp comp	89KS
25	$\rightarrow 0$	Cl ⁻	cond	89YK
25	≤0.1	Cl ⁻	cal	90BW
15, 20, 25, 30,	$4 - 6 \times 10^{-4}$	ClO_4^-	cond	90LP
35				
25	≤0.01	ClO_4^{-} , $\text{SCN}^-(\text{K}^+)$	cond	90S
25	0.05	I^-, ClO_4^-	¹³³ Cs NMR	90SL
25	0.05/TBAP	Cl	pol (DME)	91LL
25	5×10^{-3}	Cl ⁻ , TPB ⁻	¹³³ Cs NMR	91SK
25	0.05/TEAP	ClO ₄ ⁻	pol comp	91SS
25	0.05/TEAN or TEAP	-	ISE	92B
	$\leq 2.0 \times 10^{-3}$	NO ₃ ⁻ , TPB ⁻	cond	
	$\leq 6 \times 10^{-}$	NO ₃ ⁻ , TPB ⁻	cal	
25	$\leq 3.0 \times 10^{-3}$	ClO ₄ ⁻	cal comp or direct	92BS
23	0.05/TBAP	-	pol	92LL
25	0.1/TEAC	Cl ⁻	cal	92OI
25	$\leq 5 \times 10^{-4}$	ClO_4^{-}	cond	92ST
25, 35, 45	≤0.1	NO_3^-	cal	92VO
25	$1 - 2 \times 10^{-3}$	TPB ⁻	cond	93BC
	0.05/TEAP	-	pot	
25	$\leq 6 \times 10^{-5}$	ClO ₄ ⁻ , TPB ⁻	cal comp or direct	93BD
25	$\leq 1 \times 10^{-4}$	ClO_4^{-}	cond	93JH
25	0.05/TEAP		ISE	94BC
	$\leq 6 \times 10^{-5}$	ClO_4^- (Na ⁺),	cal	
		$CF_3(CF_2)_3SO_3^-, TPB^-$		
	2 2 2	$(K^{\dagger}), TPB^{-}(Rb^{\dagger}, Cs^{\dagger})$		
25	$0.8 - 1 \times 10^{-3}$	$AsF_6^-, BF_4^-, CF_3SO_3^-$	cal	94DL
25	0.1/TEAP		cal	9400
15, 25, 35, 45	≤0.0025		cal	94VB,94VBa
25	$2.5 - 2.9 \times 10^{-5}$	CIO ₄	cond	95AS

Table 16 (Continued).

(continues on next page)

Temperature/ °C	<i>I</i> /M or <i>c</i> /M (medium)	Counterion	Experimental methods	Ref.
25	≤0.1	NO ₃ ⁻	cal	95KZ
15, 25, 35, 45	≤0.1	Cl	cal	95MV
25	0.1/TEAC (H ₂ O) 0.1/TEAP (DMF)	Cl ⁻ , Br ⁻ , NO ₃ ⁻ , ClO ₄ ⁻	cal	950K
25	0.05/TEAP	ClO_4^-	cal	95OKa
25	0.005	Cl ⁻ , ClO ₄ ⁻ , SCN ⁻	cal	95WI
50, 75, 100, 125		NO ₃ ⁻	isoth flow cal ^a	
25	0.1 / TMAH	ClO_4^{-}, NO_3^{-}	cal	96BC
25	<10 ⁻³	AsF ₆ ⁻ , BF ₄ ⁻ , CF ₃ SO ₃ ⁻ , ClO ₄ ⁻	microcal	96DN
10, 15, 25, 35, 45	≤0.01	_	ISE	96EY
27	≤0.005	ClO_{4}^{-}	⁷ Li NMR	96KA
22	0.025/TBAP	ClO_4^{-}	pol (dpp)	96RE
25	0.025/TMAC	$Cl^{-}, ClO_4^{-},$	ISE	96SSa
	≤0.1	SCN ⁻	cal	
25	0.03/TEAP	NO_3^-	pol	96SSb
15-45	< 0.015	NO ₃ ⁻	cal	97LK
15, 25, 35, 45	$\leq 5 \times 10^{-4}$	ClO ₄ ⁻	cond	97RE
15-35	$\leq 4 \times 10^{-4}$	NO ₃ ⁻	cond	97SA
10, 25, 40, 55	0.05/TEAP	NO ₃ ⁻	ISE	98PS
25	0.05/TEAI	_	ISE	98SS
25	$\leq 5 \times 10^{-3}$	Cl ⁻ , Br ⁻ , I ⁻	cal	99BS
	0.05/TEAP		pot	
25	0.05/TEAP		ISE	99BSa
	$\leq 5 \times 10^{-3}$	NO ₃ ⁻ , TPB ⁻ , CF ₃ SO ₃ ⁻	cal	
25	0.1/TEAP	Cl	ISE	99KC
15, 25, 35, 45	≤0.1	NO ₃ ⁻	cal	99LP
15, 25, 35, 45, 55	$\leq 5 \times 10^{-4}$	ClO ₄ ⁻	cond	99RM
25	≤0.01	Cl⁻	cond	99SS
25	≤0.01	Cl ⁻	cond	99TM
25	$\leq 5 \times 10^{-3}$	TPB ⁻	cal	99WB
25	0.1/TEAP	ClO_4^-	cv	99WK
25	0.05/TEAP	Т	pot	00BS
	$\leq 5 \times 10^{-3}$	NO ₃ ⁻ , TPB ⁻ , CF ₃ SO ₃ ⁻	cal	
25, 35, 45	$\leq 2 \times 10^{-2}$	Cl	cal	00VG

Table 16 (Continued).

^aPressure: p = 1.52 Mpa.

Abbreviations used: TEAC: tetraethylammonium chloride; TEAI: tetraethylammonium iodide; TEAN: tetraethylammonium nitrate; TEAP: tetraethylammonium perchlorate; TBAH: tetrabutylammonium hydroxide; TBAP: tetrabutylammonium perchlorate; TMAB: tetramethylammonium bromide; TMAH: tetramethylammonium hydroxide; TPB: tetraphenylborate; pic: picrate; comp: competition.

The reviewers have tried to avoid recalculations to a preselected ionic strength so the data listed mostly correspond to values determined experimentally at ionic strength ≤ 0.1 M (see above). Experimental conditions used in papers selected for critical evaluation are summarized in Table 16.

Remarks on ionic strength conditions

The following considerations may explain why in some cases we have considered in our first selection, values that were not determined in controlled ionic strength conditions.

As mentioned before, many techniques have been used to determine stability constants of crown ether complexes. Measurements by electrochemical methods (potentiometry, polarography, cyclic voltammetry, etc.) are generally carried out in the presence of a great excess of an inert electrolyte vs. the reactants, which maintains the ionic strength and hence the activity factors (f_i) and allows for the determination of conditional stability constants K, defined in terms of concentration ratios.

$$K^{\circ} = \frac{\left(\mathrm{ML}^{\mathrm{n}+}\right)}{\left(\mathrm{M}^{\mathrm{n}+}\right)(\mathrm{L})} = K \frac{f_{\mathrm{ML}^{\mathrm{n}+}}}{f_{\mathrm{M}^{\mathrm{n}+}}f_{\mathrm{L}}}$$

where the brackets mean the activity of the species.

In some other techniques (conductometry, calorimetry, NMR, etc.) the use of a background electrolyte is less obvious or at least less frequent and the experimental requirements for the determination of conditional stability constants may not be achieved.

However, in the case of neutral ligands such as crown ethers and in the absence of a background electrolyte, the following considerations can be taken into account.

For low concentrations values ($<10^{-3}$ M), the activity coefficients can be calculated by the Debye–Hückel limiting law:

$$\lg f_{i} = -Az_{i}^{2}\sqrt{I}$$

where A is a parameter depending only on the solvent and the temperature. In these conditions, the activity coefficient of the ligand can be considered as unity ($f_L = 1$) and, if the metal ion and the complex have the same charge (which is the case for ML and ML₂ complexes reported in this review), $f_{M^{n+}}$ and $f_{ML^{n+}}$ have similar values. Consequently, the conditional stability constants can be approximated to thermodynamic constants K° ($I \approx 0$).

For higher concentrations, the activity coefficients must be calculated from the general Debye–Hückel equation involving the ion-size parameter a of the species:

$$\lg f_{\rm i} = -A Z_{\rm i}^2 \frac{\sqrt{I}}{1 + {\rm B}a\sqrt{I}}$$

In these conditions, $f_{M^{n+}}$ and $f_{ML^{n+}}$ can no longer be considered as equal and f_L may also differ from unity. The stability constants thus will vary with the ionic strength and differ from the thermodynamic value. However results of Popov et al. [79SP], performed in methanol for the system 18C6/Na⁺, have shown that the value of the stability constant remains reasonably constant and close to the thermodynamic value in the ionic strength range of 0.005 to 0.1 M (lg $K = 4.30 \pm 0.02$ for the studied complex). It is only at higher ionic strengths that the K value begins to decrease appreciably [79SP, 85ZP, 99BS].

ACKNOWLEDGMENTS

The authors especially acknowledge K. Popov, M. Zhang, and K. R. Kim for help in the translation of many Russian, Chinese, and Korean articles, respectively, and for sending the authors both data and comments. The authors are grateful for the valuable comments and suggestions from all members of Commission V.6, especially J. Felcman, T. Gajda, and P. May, who reviewed the first version of this paper.

5. REFERENCES

- 63P R. G. Pearson. J. Am. Chem. Soc. 85, 3533 (1963).
- 67P C. J. Pedersen. J. Am. Chem. Soc. 89, 2495–2496 (1967); C. J. Pedersen. J. Am. Chem. Soc. 89, 7017–7036 (1967).
- 69SP R. D. Shannon and C. T. Prewitt. Acta Crystallogr. Sect. B 25, 925–946 (1969).
- 71F H. K. Frensdorff. J. Am. Chem. Soc. 93, 600–606 (1971).
- 74CE J. J. Christensen, D. J. Eatough, R. M. Izatt. Chem. Rev. 74, 351–384 (1974).
- 74CG G. Cornelius, W. Gärtner, D. H. Haynes. Biochemistry 13, 3052–3057 (1974).
- 76IT R. M. Izatt, R. E. Terry, B. L. Haymore, L. D. Hansen, N. K. Dalley, A. G. Avondet, J. J. Christensen. J. Am. Chem. Soc. 98, 7620–7626 (1976).
- 76ITa R. M. Izatt, R. E. Terry, D. P. Nelson, Y. Chan, D. J. Eatough, J. S. Bradshaw, L. D. Hansen, J. J. Christensen. J. Am. Chem. Soc. 98, 7626–7630 (1976).
- 76KK M. Kodama and E. Kimura. Bull. Chem. Soc. Jpn. 49, 2465–2465 (1976).
- 77BC I. J. Burden, A. C. Coxon, J. F. Stoddart, C. M. Wheatley. J. Chem. Soc., Perkin Trans. 1 220–226 (1977).
- 77CS A. C. Coxon and J. F. Stoddart. J. Chem. Soc., Perkin Trans. 1 767–785 (1977).
- 77IL R. M. Izatt, J. D. Lamb, G. E. Maas, R. E. Asay, J. S. Bradshaw, J. J. Christensen. J. Am. Chem. Soc. 99, 2365–2366 (1977).
- 77ILa R. M. Izatt, J. D. Lamb, R. E. Asay, G. E. Maas, J. S. Bradshaw, J. J. Christensen, S. S. Moore. J. Am. Chem. Soc. 99, 6134–6136 (1977).
- 77MP E. Mei, A. I. Popov, J. L. Dye. J. Phys. Chem. 81, 1677-1681 (1977).
- 77SZ C. Srivanavit, J. I. Zink, J. J. Dechter. J. Am. Chem. Soc. 99, 5876–5881 (1977).
- 78G V. Gutmann. *The Donor Acceptor Approach to Molecular Interactions*, Plenum, New York (1978).
- 78KK M. Kodama and E. Kimura. Inorg. Chem. 17, 2446 (1978).
- 79HR H. Høiland, J. A. Ringseth, T. S. Brun. J. Solution Chem. 8, 779–792 (1979).
- 79LI J. D. Lamb, R. M. Izatt, J. J. Christensen, D. J. Eatough. In Coordination Chemistry of Macrocyclic Compounds, G. A. Melson (Ed.), pp. 145–214, Plenum, New York (1979).
- 79M *Coordination Chemistry of Macrocyclic Compounds*, G. A. Melson (Ed.), pp. 145–214, Plenum, New York (1979).
- 79PL A. I. Popov and J.-M. Lehn. In *Coordination Chemistry of Macrocyclic Compounds*, G. A. Melson (Ed.), pp. 537–602, Plenum, New York (1979).
- 79R C. Reichardt. *Solvent Effects in Organic Chemistry*, pp. 14–19, Verlag Chemie, Weinheim (1979).
- 79SP A. J. Smetana and A. I. Popov. J. Chem. Thermodyn. 11, 1145–1149 (1979).
- 80BS G. D. Beresford and J. F. Stoddart. Tetrahedron Lett. 21, 867–870 (1980).
- 80HN H. P. Hopkins, Jr. and A. B. Norman. J. Phys. Chem. 84, 309-314 (1980).
- 80IY I. Ikeda, S. Yamamura, Y. Nakatsuji, M. Okahara. J. Org. Chem. 45, 5355–5358 (1980).
- 80KC I. M. Kolthoff and M. K. Chantooni, Jr. Anal. Chem. 52, 1039–1044 (1980).
- 80LC J. D. Lamb, J. J. Christensen, J. L. Oscarson, B. L. Nielsen, B. W. Asay, R. M. Izatt. J. Am. Chem. Soc. 102, 6820–6824 (1980).
- 80LI J. D. Lamb, R. M. Izatt, C. S. Swain, J. J. Christensen. J. Am. Chem. Soc. 102, 475–479 (1980).
- 80LV J. M. Lehn and P. Vierling. *Tetrahedron Lett.* 21, 1323–1326(1980).
- 80MD J. Massaux, J. P. Desreux, G. Duyckaerts. J. Chem. Soc., Dalton Trans. 865 (1980).
- 80PT D. G. Parsons, M. R. Truter, J. N. Wingfield. Inorg. Chim. Acta 47, 81–86 (1980).
- 80SP A. J. Smetana and A. I. Popov. J. Solution Chem. 9, 183–196 (1980).
- 80TY Y. Takeda, H. Yano, M. Ishibashi, H. Isozumi. Bull. Chem. Soc. Jpn. 53, 72–76 (1980).
- 80WJ G. Wang and Z. Jiang. Chem. J. Chin. Univ. 1, 117 (1980).

Stability constants and thermodynamic functions of metal complexes of crown ethers 97

- 81BL A. V. Bogatskii, N. G. Luk'yanenko, Yu. A. Popkov, K. S. Zakharov, V. M. Vavra. Zh. Organich. Khim. 17 (5), 1062 (1981).
- 81IK I. Ikeda, T. Katayama, M. Okahara, T. Shono. *Tetrahedron Lett.* 22, 3615 (1981).
- 81LP J. D. Lin and A. I. Popov. J. Am. Chem. Soc. 103, 3773–3777 (1981).
- 81RP G. Rounaghi and A. I. Popov. J. Inorg. Nucl. Chem. 43, 911–915 (1981).
- 81SD R. A. Schultz, D. M. Dishong, G. W. Gokel. Tetrahedron Lett. 22, 2623 (1981).
- 81T Y. Takeda. Bull. Chem. Soc. Jpn. 54, 3133–3136 (1981).
- 82DG D. M. Dishong and G. W. Gokel. J. Org. Chem. 47, 147–148 (1982).
- 82GD D. M. Goli, D. M. Dishong, C. J. Diamond, G. W. Gokel. *Tetrahedron Lett.* 23, 5243 (1982).
- 82HL B. L. Haymore, J. D. Lamb, R. M. Izatt, J. J. Christensen. Inorg. Chem. 21, 1598–1602 (1982).
- 82IE I. Ikeda, H. Emura, S. Yamamura, M. Okahara. J. Org. Chem. 47, 5150 (1982).
- 82MD J. Massaux and J. F. Desreux. J. Am. Chem. Soc. 104, 2967 (1982).
- 82MK H. Maeda, T. Kikui, Y. Nakatsuji, M. Okahara. J. Org. Chem. 47, 5167 (1982).
- 82MR J. Massaux, G. Roland, J. F. Desreux. Inorg. Chim. Acta 60, 129 (1982).
- 82MRa G. Michaux and J. Reisse. J. Am. Chem. Soc. 104, 6895-6899 (1982).
- 82MY T. Miyazaki, S. Yanagida, A. Itoh, M. Okahara. Bull. Chem. Soc. Jpn. 55, 2005 (1982).
- 82NY T. Nakamura, Y. Yumoto, K. Izutsu. Bull. Chem. Soc. Jpn. 55, 1850–1853 (1982).
- 82YM H. Yamana, T. Mitsugashira, Y. Shiokawa, S. Suzuki. Bull. Chem. Soc. Jpn. 55, 2615–2617 (1982).
- 83AA E. Amble and E. Amble. *Polyhedron* **2**, 1063 (1983).
- 83AAa M.-C. Almasio, F. Arnaud-Neu, M.-J. Schwing-Weill. Helv. Chim. Acta 66, 1296 (1983).
- 83DD D. M. Dishong, C. J. Diamond, M. I. Cinoman, G. W. Gokel. J. Am. Chem. Soc. 105, 586 (1983).
- 83GG G. W. Gokel, D. M. Goli, C. Minganti, L. Echegoyen. J. Am. Chem. Soc. 105, 6786–6790 (1983).
- 83LS G.-H. Luo, M.-C. Shen, X.-M. Zhuge, A.-B. Dai, G.-Y. Lu, H.-W. Hu. *Huaxue Xuebao (Acta Chim. Sinica)* **41**, 877 (1983).
- 83PK V. Pechanec, O. Kocián, J. Závada. Collect. Czech. Chem. Commun. 48, 1144–1157 (1983).
- 83T Y. Takeda. Bull. Chem. Soc. Jpn. 56, 866–868 (1983).
- 84BR E. Blasius, R. A. Rausch, G. D. Andreetti, J. Rebizant. Chem. Ber. 117, 1113–1127(1984).
- 84DI R. B. Davidson, R. M. Izatt, J. J. Christensen, R. A. Schultz, D. M. Dishong, G. W. Gokel. J. Org. Chem. 49, 5080 (1984).
- 84EK L. Echegoyen, A. Kaifer, H. Durst, R. A. Schultz, D. M. Dishong, D. M. Goli, G. W. Gokel. J. Am. Chem. Soc. 106, 5100–5103 (1984).
- 84FL P. Fux, J. Lagrange, P. Lagrange. Anal. Chem. 56, 160–163 (1984).
- 84LA C. Luca and H. A. Azab. Anal. Lett. 17 (A17), 1937–1946 (1984).
- 84NM Y. Nakatsuji, T. Mori, M. Okahara. J. Chem. Soc., Chem. Commun. 1045–1046 (1984).
- 84P G. Pan. Gaodeng Xuexiao Huaxue Xuebao (Chem. J. Chin. Univ.) 5, 395 (1984).
- 84S F. S. Stöver. J. Chromatogr. 298, 203–210 (1984).
- 84SL M. Shen, Q. Luo, X. Zhuge, A. Dai. Kexue Tongbao (Foreign Lang. Ed.) 29, 1205 (1984).
- 84ZB D. Ph. Zollinger, M. Bos, A. M. W. van Veen-Blaauw, W. E. van der Linden. Anal. Chim. Acta 161, 83–90 (1984).
- 85B H. J. Buschmann. Inorg. Chim. Acta 98, 43–46 (1985).
- 85Ba H. J. Buschmann. Inorg. Chim. Acta 105, 59-62 (1985).
- 85Bb H. J. Buschmann. Chem. Ber. 118, 2746–2756 (1985).
- 85Bc H. J. Buschmann. Chem. Ber. 118, 4297–4302 (1985).
- 85BF M. Brighli, P. Fux, J. Lagrange, P. Lagrange. Inorg. Chem. 24, 80–84 (1985).
- 85BP R. D. Boss and A. I. Popov. *Inorg. Chem.* 24, 3660–3664 (1985).
- 85E C. Erk. Spectrosc. Lett. 18, 723 (1985).
- 85GL P. Gramain and M. Lauth. Nouv. J. Chim. 9, 633–635 (1985).

- 85KT M. M. Khalil, I. Tanase, C. Luca. *Talanta* **32**, 1151–1152 (1985).
- 85IB R. M. Izatt, J. S. Bradshaw, S. A. Nielsen, J. D. Lamb, J. J. Christensen, D. Sen. *Chem. Rev.* 85, 271–339 (1985).
- 85LA Y.-C. Lee, J. Allison, A. I. Popov. Polyhedron 4, 441–445 (1985).
- 85LAa C. Luca, H. A. Azab, I. Tănase. Anal. Lett. 18 (A4), 449–465 (1985).
- 85SK Y. Shiokawa, T. Kido, S. Suzuki. J. Radioanal. Nucl. Chem. Lett. 96, 249–256 (1985).
- 85SP B. O. Strasser and A. I. Popov. J. Am. Chem. Soc. 107, 7921–7924 (1985).
- 85TA Y. Takeda and O. Arima. *Bull. Chem. Soc. Jpn.* **58**, 3403–3404 (1985).
- 85TJ A. G. Talma, P. Jouin, J. G. De Vries, C. B. Troostwijk, G. H. W. Buning, J. K. Waninge, J. Visscher, R. M. Kellogg. J. Am. Chem. Soc. 107, 3981–3997 (1985).
- 85ZB D. Ph. Zollinger, M. Bos, A. M. W. van Veen-Blaauw, W. E. van der Linden. Anal. Chim. Acta 167, 89–96 (1985).
- 85ZP J. Závada, V. Pechanec, J. Zajícek, I. Stibor, A. Vítek. Collect. Czech. Chem. Commun. 50, 1184–1193 (1985).
- 86AG K. A. Arnold and G. W. Gokel. J. Org. Chem. 51, 5015–5016 (1986).
- 86B H.-J. Buschmann. *Thermochim. Acta* **102**, 179–184 (1986).
- 86Ba H.-J. Buschmann. J. Solution Chem. 15, 453–461 (1986).
- 86Bb H.-J. Buschmann. Thermochim. Acta 107, 219–226 (1986).
- 86BP R. D. Boss and A. I. Popov. Inorg. Chem. 25, 1747–1750 (1986).
- 86IC R. M. Izatt, G. A. Clark, J. D. Lamb, J. E. King, J. J. Christensen. *Thermochim. Acta* 97, 115–126 (1986).
- 86OE E. Ozkan and C. Erk. Spectrosc. Lett. 19 (7), 693–698 (1986).
- 86PA S. Petrucci, R. J. Adamic, E. M. Eyring. J. Phys. Chem. 90, 1677–1683 (1986).
- 86S F. S. Stöver. J. Chromatogr. 368, 476–477 (1986).
- 86SR V. P. Solov'ev, O. A. Raevskii, V. E. Zubareva. *Izv. Akad. Nauk. SSSR. Ser. Khim.*, 8, 1754–1756 (1986); English transl. 1591–1593 (1987).
- 86ZK V. O. Zavel'skii, V. P. Kazachenko, V. P. Novikov, V. P. Solov'ev, O. A. Raevskii. *Koord. Chim.* 12, 1060 (1986).
- 87AE K. A. Arnold, L. Echegoyen, G. W. Gokel. J. Am. Chem. Soc. 109, 3713–3715 (1987).
- 87B H. J. Buschmann. J. Solution Chem. 16, 181–190 (1987).
- 87BB R. Benken and H. J. Buschmann. Inorg. Chim. Acta 134, 49 (1987).
- 87BL V. V. Bogoslovskii and L. A. Lozinskaya. J. Gen. Chem. USSR (Engl. Transl.) 57, 1852–1856 (1987); Zh. Obshch. Khim. 57, 2068–2073 (1987).
- 87CB L. Chen, M. Bos, P. D. J. Grootenhuis, A. Christenhusz, A. Hoogendam, D. N. Reinhoudt, W. E. Van der Linden. *Anal. Chim. Acta* 201, 117–125 (1987).
- 87GH G. W. Gokel, J. C. Hernandez, A. M. Viscariello, K. A. Arnold, C. F. Campana, L. Echegoyen, F. R. Fronczek, R. D. Gandour, C. R. Morgan, J. E. Trafton, S. R. Miller, C. Minganti, D. Eiband, R. A. Schultz, M. J. Tamminen. J. Org. Chem. 52, 2963 (1987).
- 87IB R. M. Izatt, R. L. Bruening, G. A. Clark, J. D. Lamb, J. J. Christensen. Sep. Sci. Technol. 22, 661–675 (1987).
- 87LF S. Lifson, C. E. Felder, A. Shanzer, J. Libman. In Synthesis of Macrocycles. The Design of Selective Complexing Agents, R. M. Izatt and J. J. Christensen (Eds.), pp. 241–307, Wiley-Interscience, New York (1987).
- B. Jebbing, D. Ph. Zollinger, M. Bos. Unpublished results cited in D. Ph. Zollinger, E. Bulten,
 A. Christenhusz, M. Bos, W. E. van der Linden, *Anal. Chim. Acta* 198, 207 (1987).
- 87KH K. Kikukawa, G. X. E. A. Abe, T. Goto, R. Arata, T. Ikeda, F. Wada, T. Matsuda. J. Chem. Soc., Perkin Trans. 2 135–141 (1987).
- 87MG A. A. Majmudar and A. R. Gupta. Indian J. Chem. Soc., Sect. A 26, 721–727 (1987).

- 87PL P. G. Potvin and J.-M. Lehn. In Synthesis of Macrocycles. The Design of Selective Complexing Agents, R. M. Izatt and J. J. Christensen (Eds.), pp. 167–239, Wiley-Interscience, New York (1987).
- 87RS O. A. Raevskii, V. P. Solov'ev, L. V. Govorkova, E. A. Vnuk. *Izv. Akad. Nauk. SSSR, Ser. Khim.* 3, 594–596 (1987); pp. 545–547 (1987) (English).
- 87SK V. P. Solov'ev, V. P. Kazachenko, V. O. Zavel'skii, L. V. Govorkova, O. A. Raevskii. *Koord. Khim.* 13, 909–913 (1987); pp. 517–521 (1988) (English).
- 87ZB D. Ph. Zollinger, E. Bulten, A. Christenhusz, M. Bos, W. E. van der Linden. *Anal. Chim. Acta* **198**, 207–222 (1987).
- 87ZV D. Ph. Zollinger, A. M. W. van Veen, M. Bos, W. E. van der Linden. Unpublished results cited in D. Ph. Zollinger, E. Bulten, A. Christenhusz, M. Bos, W. E. van der Linden. Anal. Chim. Acta 198, 207 (1987).
- 88B H.-J. Buschmann. J. Solution Chem. 17, 277–286 (1988).
- 88Ba H.-J. Buschmann. Polyhedron 7, 721 (1988).
- 88CR M. K. Chantooni Jr., G. Roland, I. M. Kolthoff. J. Solution Chem. 17, 175–189 (1988).
- 88E C. Erk. J. Mol. Liq. 37, 107 (1988).
- 88FK Yu. Ya. Fialkov, V. V. Kryukov, Yu. A. Tarasenko, V. L. Chumak. Ukr. Khim. Zh. 54, 17 (1988).
- 88HA A. Hassan, H. A. Azab, S. A. El-Shatoury. Bull. Fac. Sci. Assiut Univ. 17, 47–57 (1988).
- 88HD Y. Hasegawa and H. Date. Solv. Extr. Ion Exch. 6, 431–437 (1988).
- 88LFa E. Lada, S. Filipek, M. K. Kalinowski. Aust. J. Chem. 41, 437-441 (1988).
- 88OP N. O. Okoroafor and A. I. Popov. *Inorg. Chim. Acta* 148, 91–96 (1988).
- 88SV V. P. Sovol'ev, E. A. Vnuk, O. A. Raevskii. Koord. Khim. 14, 1372 (1988).
- 88TK Y. Takeda, K. Katsuta, Y. Inoue, T. Hakushi. Bull. Chem. Soc. Jpn. 61, 627(1988).
- 89B J. H. Buschmann. J. Incl. Phenom. Mol. Recognit. Chem. 7, 581–588(1989).
- 89BB G. Bonas, C. Bosso, M. R. Vignon. J. Inclusion Phenom. Mol. Recognit. Chem. 7, 637–647 (1989).
- 89BP J. C. G. Bünzli and F. Pilloud. Inorg. Chem. 28, 2638–2642 (1989).
- 89E C. Erk. J. Mol. Liq. 40, 143–153 (1989).
- 89GS M. Geringer and H. Sterk. Magn. Res. Chem. 27, 1148–1154 (1989).
- 89KM S. A. Kulyukhin, A. V. Majorov, A. N. Kamenskaya, N. B. Mikheev. *Radiokhimiya* 31, 48–52 (1989).
- 89KS S. Kashanian and M. Shamsipur. Inorg. Chim. Acta 155, 203–206 (1989).
- 89L L. F. Lindoy. *The Chemistry of Macrocyclic Ligand Complexes*, Cambridge University Press, Cambridge (1989).
- 89MG A. I. Mishustin, N. B. Generalova, A. Yu. Tsivadze. *Russian J. Inorg. Chem. (Engl. Transl.)* 34, 801 (1989); *Zh. Neorg. Khim.* 34, 1421 (1989).
- 89YK S. S. Yun, S. H. Kim, J. M. Yang, K. Y. Choi. Bull. Korean Chem. Soc. 10, 155–158 (1989).
- 90BW L. E. Briggner and I. Wadsö. In A Thermochemical Study of Inclusion Compounds, L. E. Briggner (Ed.), Part. 1, pp. 1–31, University of Lund, Lund (1990).
- 90E Ç. Erk. J. Phys. Chem. 94, 8617–8620 (1990).
- 90LP S. S. Lee, S. O. Park, J. H. Jung, B. Y. Lee, S.-J. Kim. *Bull. Korean. Chem. Soc.* **11**, 276–281 (1990).
- 90MB A. A. Majmudar, K. C. Bhalla, A. R. Gupta. Indian J. Chem. 29A, 639–646 (1990).
- 90RS O. A. Raevskii, A. M. Sapegin, V.V. Chistyakov, V. P. Solov'ev, N. S. Zefirov. *Koord. Khim.* 16, 1175–1184 (1990).
- 90S M. Salomon. J. Solution Chem. 19, 1225–1236 (1990).
- 90SL L. L. Soong, G. E. Leroi, A. I. Popov. Inorg. Chem. 29, 1366–1370 (1990).
- 91AS M. K. Amini and M. Shamsipur. J. Phys. Chem. 95, 9601–9604 (1991).
- 91C D. J. Cram. *From Design to Discovery*, p. 91, American Chemistry Society, Washington, DC (1991).

- 91DV B. Dietrich, P. Viout, J.-M. Lehn. Aspects de la Chimie des Composés Macrocycliques, InterEditions, Paris (1991).
- 91E Ç. Erk. Thermochim. Acta 180, 317–324 (1991).
- 91GT B. S. Grabaric, M. Tkalcec, V. Merzel, I. Filipovic. *Electroanalysis (N. Y.)* 3, 647–653 (1991).
- 91IP R. M. Izatt, K. Pawlak, J. S. Bradshaw, R. L. Bruening. Chem. Rev. 91, 1721–2085 (1991).
- 91LK E. Lada and M. K. Kalinowski. Monatsh. Chem. 122, 1-8 (1991).
- 91LL C.-W. Lee, C.-H. Lee, D.-S. Shin, S.-J. Kim. Bull. Korean Chem. Soc. 12, 487–490 (1991).
- 91KS T. Kiss, I. Sovago, A. Gergely. Pure Appl. Chem. 63, 597 (1991).
- 91MY H. Matsuda, Y. Yamada, K. Kanamori, Y. Kudo, Y. Takeda. Bull. Chem. Soc. Jpn. 64, 1497–1508 (1991).
- 91PS H. Parham and M. Shamsipur. J. Electroanal. Chem. 314, 71–80 (1991).
- 91SK R. T. Streeper and S. Khazaeli. Polyhedron 10, 221–227 (1991).
- 91SM R. M. Smith, A. E. Martell, Y. Chen. Pure Appl. Chem. 63, 1015 (1991)
- 91SS A. Semnani and M. Shamsipur. J. Electroanal. Chem. 315, 95–101(1991).
- 91V F. Vögtle. *Supramolecular Chemistry*, Wiley, Chichester (1991).
- 92B H. J. Buschmann. Inorg. Chim. Acta 195, 51–60 (1992).
- 92BC H. J. Buschmann, E. Cleve, E. Schollmeyer. Thermochim. Acta 207, 329–336 (1992).
- 92BS H. J. Buschmann, E. Schollmeyer. *Thermochim. Acta* 211, 13–20 (1992).
- 92CS B. G. Cox and H. Schneider. *Coordination and Transport Properties of Macrocyclic Compounds in Solution*, Elsevier, Amsterdam (1992).
- 92GS L. N. Gall, I. V. Smirnov, A. V. Chuprikov, A. Yu. Shadrin, V. A. Shkurov. Doklady. Akad. Nauk SSSR 325 (3), 514–517 (1992).
- 92KS H. Kim, O. F. Schall, J. Fang, J. E. Trafton, T. Lu, J. L. Atwood, G. W. Gokel. J. Phys. Org. Chem. 5, 482–495 (1992).
- 92LL E. Lada, X. Lei, M. K. Kalinowski. Monatsh. Chem. 123, 425–433 (1992).
- 92MV N. B. Mikheev, I. E. Veleshko, S. A. Kulukhin. *Radiokhimiya* **34** (2), 102–108 (1992); *Chem. Abstr.* **118**, 12173b (1993).
- 920I K. Ozutsumi and S. Ishiguro. Bull. Chem. Soc. Jpn. 65, 1173–1175 (1992).
- 92SB U. Sharma and V. K. Bhagwat. Asian J. Chem. 4, 758–763 (1992).
- 92ST A. K. Srivastava and B. Tiwari. J. Electroanal. Chem. 325, 301–311 (1992).
- 92TU T. Takahashi, A. Uchiyama, K. Yamada, B. C. Lynn, G. W. Gokel. *Tetrahedron Lett.* 33, 3825–3828 (1992).
- 92VO V. P. Vasil'ev, T. D. Orlova, N. Yu. Goncharova. Russ. J. Inorg. Chem. (Engl. Transl.) 37, 1080–1082 (1992); Zh. Neorg. Khim. 37, 2088–2091 (1992).
- 92ZQ B. Zeng, B. Qian, C. Beng. Huaxue Shije 33, 25–27 (1992); Chem. Abstr. 117, 25–27 (1992).
- 93BC H. J. Buschmann, E. Cleve, E. Schollmeyer. *GIT Fachz. Lab.* **37**, 746, 748–751 (1993).
- 93BD H. J. Buschmann, H. Dong, E. Schollmyer. J. Coord. Chem. 30, 311–316 (1993).
- 93GB A. Göçmen, M. Bulut, Ç. Erk. Pure Appl. Chem. 65, 447–450 (1993).
- 93GE A. Goçmen and C. Erk. Fresenius' J. Anal. Chem. 347 (12), 471–474 (1993).
- 93IH Y. Inoue, T. Hakushi, Y. Liu, L. H. Tong. J. Org. Chem. 58, 5411–5413 (1993).
- 93JH A. Jabbari, M. Hasani, M. Shamsipur. J. Inclusion Phenom. Mol. Recognit. Chem. 15, 329–340 (1993).
- 93LK E. Lada, A. Koczorowska, X. Lei, M. K. Kalinowski. Pol. J. Chem. 67, 211–217 (1993).
- 93LT B. C. Lynn, M. Tsesarskaja, O. F. Schall, J. C. Hernandez, S. Watanabe, T. Takahashi, A. Kaifer, G. W. Gokel. Supramol. Chem. 1, 253–260 (1993).
- 93PS H. Parham and M. Shamsipur. *Talanta* **40**, 1353–1356 (1993).
- 93SM J. N. Spencer, J. E. Mihalick, T. J. Nicholson, P. A. Cortina, J. L. Rinehimer, J. E. Smith, X. Ke, Q. He, S. E. Daniels, S. Puppala, J. L. Ealy, L. J. Fenton, W. J. Nicholson, I. M. Paul, C. H. Yoder. J. Phys. Chem. 97, 10509–10512 (1993).
- 94BC H.-J. Buschmann, E. Cleve, E. Schollmeyer. J. Sol. Chem. 23, 569–577 (1994).

Stability constants and thermodynamic functions of metal complexes of crown ethers 101

- 94DL A. F. Danil de Namor, M. A. Llosa Tanco, M. Salomon, J. C. Y. Ng. J. Phys. Chem. 98, 11796–802 (1994).
- 94G G. Gokel. Crown Ethers & Cryptands, Royal Society of Chemistry, Cambridge (1994).
- 9400 K. Ozutsumi, K. Ohtsu, T. Kawashima. J. Chem. Soc., Faraday Trans. 90, 127-131 (1994).
- 94RA A. Rouhollahi, M. K. Amini, M. Shamsipur. J. Solution Chem. 23, 63–74 (1994).
- 94VB V. P. Vasil'ev, V. A. Borodin, N. V. Markova. Zh. Neorg. Khim. 39, 653–5 (1994).
- 94VBa V. P. Vasil'ev, V. A. Borodin, N. V. Markova. Zh. Obshch. Khim. 64, 1910-13 (1994).
- 95AS A. D'Aprano, M. Salomon, V. Mauro. J. Solution Chem. 24, 685–702 (1995).
- 95DL A. F. Danil de Namor, M. A. Liosa Tanco, J. C. Y. Ng, M. Salomon. *Pure Appl. Chem.* 67, 1095–1112 (1995).
- 95IP R. M. Izatt, K. Pawlak, J. S. Bradshaw, R. L. Bruening. Chem. Rev. 95, 2529–2586 (1995).
- 95KT Y. Kudo, Y. Takeda, H. Matsuda. J. Electroanal. Chem. 396, 333–338 (1995).
- 95KZ K. E. Krakowiak, X. X. Zhang, J. S. Bradshaw, C. Y. Zhu, R. M. Izatt. J. Inclusion Phenom. Mol. Recognit. Chem. 23, 223–231 (1995).
- 95L J.-M. Lehn. Supramolecular Chemistry. Concepts and Perspectives, VCH, Weinheim (1995).
- 95MV N. V. Markova and V. P. Vasiliev. J. Thermal Anal. 45, 695–701 (1995).
- 950K K. Ozutsumi, K. Kohyama, K. Ohtsu, T. Kawashima. J. Chem. Soc., Dalton Trans. 3081–3085 (1995).
- 950Ka K. Ohtsu, T. Kawashima, K. Ozutsumi. J. Chem. Soc., Faraday Trans. 91, 4375–4380 (1995).
- 95WI P. Wang, R. M. Izatt, S. E. Gillespie, J. L. Oscarson, X. X. Zhang, C. Wang, J. D. Lamb. J. Chem. Soc., Faraday Trans. 91, 4207–4213 (1995).
- 96BC H.-J. Buschmann, E. Cleve, E. Schollmeyer. J. Coord. Chem. 39, 293–298 (1996).
- 96BG V. P. Barannikov, S. S. Guseinov, A. V. Matveev, A. I. V'yugin. Russ. J. Coord. Chem. 22 (4), 263–268 (1996); Transl. of Koord. Khim. 279 (1996).
- 96BI J. S. Bradshaw, R. M. Izatt, A. V. Bordunov, C. Y. Zhu, J. K. Hathaway. *Comprehensive Supramolecular Chemistry*, G. W. Gokel (Ed.), Vol. 1, p. 3, Pergamon, New York (1996).
- 96DN A. Danil de Namor, J. C. Ng, M. A. L. Tanco, M. Salomon. J. Phys. Chem. 100, 14485–14491 (1996).
- 96EY S. V. Eltsov, V. A. Yurchenko, N. V. Bondarev. Zh. Obshch. Khim. 66, 549–552 (1996).
- 96GM C. M. Goff, M. A. Matchette, N. Shabestary, S. Khazaeli. Polyhedron 15, 3897–3903 (1996).
- 96KA E. Karkhaneei, A. Afkhami, M. Shamsipur. J. Coord. Chem. 39, 33–42 (1996).
- 96KAa E. Karkhaneei, A. Afkhami, M. Shamsipur. Polyhedron 15, 1989–1994 (1996).
- 96KS E. N. Kabakova, I. A. Shevchenko, A. M. Zholnovach, N. V. Bondarev. Zh. Obshch. Khim. 66 (2), 208–211 (1996).
- 96LK E. E. Lipovetskaya, E. N. Kabakova, N. V. Bondarev. Zh. Obshch. Khim. 66 (2), 204–207 (1996).
- 96OK K. Ohtsu, T. Kawashima, K. Ozutsumi. Anal. Sci. 12, 37-42 (1996).
- 96RE C. Rounaghi, Z. Eshagi, E. Ghiamati. *Talanta* 43, 1043–1048 (1996).
- 96SS A. Semnani and M. Shamsipur. Pol. J. Chem. 70, 74–78 (1996).
- 96SSa V. P. Solov'ev, N. N. Strakhova, O. A. Raevsky, V. Rüdiger, H.-J. Schneider. *J. Org. Chem.* **61**, 5221–5226 (1996).
- 96SSb M. Shamsipur and A. Semnani. Iran. J. Chem. Chem. Eng. 15, 28-34 (1996).
- 96YO O Yamauchi and A. Odani. Pure Appl. Chem. 68, 469 (1996).
- 97BE D. A. Brazhnikova, S. V. El'tsov, N. V. Bondarev. Russ. J. Gen. Chem. 67, 845–849 (1997);
 Zh. Obsch. Khim. 67 (6), 903 (1997).
- 97CC D. J. Cram and J. M. Cram. *Container Molecules and Their Guests*, The Royal Society of Chemistry, Cambridge (1997).
- 97DT Yu. Didi, E. N. Tsurko, N. V. Bondarev, A. P. Kern. Visn. Khark. Univ. 395, 181–196 (1997); Zh. Obsch. Khim. 67 (6), 885 (1997).

- 97LK O. V. Larina, A. P. Kern, N. V. Bondarev. Russ. J. Gen. Chem. 67, 1351–1354 (1997); Zh. Obsch. Khim. 67, 1439 (1997).
- 97LP L. H. J. Lajunen, R. Portanova, J. Piispanen, M. Tolazzi. Pure Appl. Chem. 69, 37 (1997).
- 97RE G. Rounaghi, Z. Eshaghi, E. Ghiamati. Talanta 44, 275–282 (1997).
- 97SA M. I. Sway and A. S. Abushamleh. Arab Gulf J. Scient. Res. 15, 255–273 (1997).
- 97VO V. P. Vasil'ev, T. D. Orlova, T. V. Balashova. Zh. Fizich. Khim. 71, 1519 (1997)
- 97YY P. Yi, Q. Yu, R. Lin, H. Zong. Wuli Huaxue Xuebao 13, 569–572 (1997).
- 98BJ H.-J. Buschmann, K. Jansen, C. Meschke, E. Schollmeyer. J. Solution Chem. 27, 135–140 (1998).
- 98KB E. N. Kabakova and N. V. Bondarev. Zh. Fizich. Khim. 72, 1196–1199 (1998).
- 98MT D. Marji and Z. Taha. J. Inclusion Phenom. 30, 309–320 (1998).
- 98PS H. R. Pouretedal and M. Shamsipur. J. Chem. Eng. Data 43, 742–744 (1998).
- 98RH G. H. Rounaghi, M. S. Hosseini, E. Ghiamati. Iran. J. Chem. Chem. Eng. 17, 4–7 (1998).
- 98SS V. P. Solov'ev, N. N. Strakhova, V. P. Kazachenko, A. F. Solotnov, V. E. Baulin, O. A. Raevsky, V. Rüdiger, F. Eblinger, H.-J. Schneider. *Eur. J. Org. Chem.* 1379–1389 (1998).
- 99BG P. D. Beer, P. A. Gale, D. K. Smith. Supramolecular Chemistry, Oxford Chemistry Primers, n° 74, Oxford University Press, Oxford (1999).
- 99BS H.-J. Buschmann and E. Schollmeyer. *Thermochim. Acta* 333, 49–53 (1999).
- 99BSa H.-J. Buschmann and E. Schollmeyer. J. Electroanal. Chem. 474, 188–191 (1999).
- 99C J. R. Chipperfield. *Non-aqueous Solvents*, Oxford Chemistry Primers, n° 69, Oxford University Press, Oxford (1999).
- 99E C. Erk. NATO ASI Ser., Ser. C, 526 (NMR in Supramolecular Chemistry), pp. 315–318 (1999).
- 99KC I. M. Kolthoff, M. K. Chantooni, Jr., G. Roland. J. Coord. Chem. 48, 207–217 (1999).
- 99LP O. V. Larina, A. M. Partolina, T. A. Petrun'kina, N. V. Bondarev. Russ. J. Gen. Chem. 69, 363–365 (1999); Zh. Obsch. Khim. 69, 374 (1999).
- 99RM G. Rounaghi, F. Milani-Nejad, K. Taheri. Indian J. Chem. 38A, 568–574 (1999).
- 99SS M. I. Sway and N. Samara. J. Chem. Eng. Data 44, 343–348 (1999).
- 99TM Y. Takeda, Y. Mochizuki, M. Tanaka, Y. Kudo, S. Katsuta, M. Ouchi. J. Inclusion Phenom. Macrocyclic Chem. 33, 217–231 (1999).
- 99WB G. Wenz, H.-J. Buschmann, E. Schollmeyer. J. Coord. Chem. 48, 465–476 (1999).
- 99WK E. Wagner-Czauderna, A. Koczorovska, M. K. Kalinovski. J. Coord. Chem. 46, 265–276 (1999).
- 00BS H.-J. Buschmann and E. Schollmeyer. Inorg. Chim. Acta 298, 120–122 (2000).
- 00FM A. R. Fakhari, M. F. Mousavi, M. S. Rahmanifar. Iran. J. Sci. Technol. 24, 183–188 (2000).
- 00KT S. Katsuta, F. Tsuchiya, Y. Takeda. *Talanta* **51**, 637–644 (2000).
- 000K T. Ossowski, J. Kira, D. Rogowska, H. Warmke, J. Mlodzianowski. J. Chem. Soc., Dalton Trans. 689–696 (2000).
- 00SA J. W. Steed and J. L. Atwood. Supramolecular Chemistry, Wiley, Chichester (2000).
- 00VG V. P. Vasilev, M. N. Goncharova, T. D. Orlova. Russ. J. Coord. Chem. 26, 170–171 (2000).